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Abstract: The Cirac-Zoller mechanism is generally used for the implementation of CNOT gates in ion trap quantum

computers. We present here a highly detailed quantum physical description of this approach. To keep the presentation

simple, the qubits are modeled as rigid rotors and the radiation field of each of the lasers is treated as a classical field.

In combination with the corresponding first part (Ion Trap Quantum Computer Part 1: 1-Qubit Gates), this results in

the complete quantum theory of a universal set of quantum gates. This presentation is intended for readers with basic

knowledge of quantum physics and assumes familiarity with Part 1.
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1. Introduction

According toMcKinsey’s Quantum Technology Monitor, the year 2025 marks a significant milestone for quantum

technologies [1]. The industry - until now primarily in the research phase - is on the verge of shifting its focus to real-world

applications. Global investments in quantum technologies are projected to reach approximately $10 billion in 2025. The

authors of the report estimate that the market size will grow to $100 billion within the next decade. Quantum technologies

are poised to seep into everyday life, and engineers in particular should prepare for this transformation. We hope this

article will support that effort.

In classical computer technology, the NAND gate is a so-called universal gate. This means that all conceivable circuits

on a computer’s CPU can be constructed solely by cleverly combining NAND or Toffoli gates. The situation is somewhat

more complicated with quantum gates. However, at least: The 2-qubit Controlled-Not gate (CNOT gate) in combination

with 1-qubit gates constitutes a universal set of quantum gates. Every conceivable quantum circuit can be constructed

from 1-qubit gates and the CNOT gate. This underscores the importance of the CNOT gate, which will be the focus of this

article.

The topic of ‘universal gates’ deserves some additional elucidation [2]. Firstly, the set of universal gates is not

unique. It turns out that the set consisting of the CNOT gate, in combination with the Hadamard and Pπ/4 gates (Pπ/4 :=
|0〉〈0|+ ei π

4 |1〉〈1|), is a convenient choice. Secondly, it is good to know that universal sets of gates exist, but it is also

essential to understand how the number of required gates scales with the size of the circuit (i.e., the number of qubits, n).
For if the number of gates needed scales, for example, exponentially with n, it would not be realistic to hope for an efficient
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quantum computer. Fortunately, the Solovay-Kitaev theorem states that it is possible to combine universal gates efficiently

(for details, see [2], Section 4.5, and [3], Section 5.5).

Various companies are racing to develop programmable quantum computers with properties that facilitate the solution

of real-world problems. The required features include a sufficient number of qubits (scalability), high gate fidelity, long

qubit coherence times, fast gate operations, and good qubit connectivity. More practical aspects - such as the required

cooling effort, manufacturing techniques, and component integration - will also be important in the long run. The leading

players in the field are pursuing different approaches to qubit implementation, as each method offers advantages and

disadvantages with respect to the aforementioned attributes. Currently, it is fair to say that two types of implementations

are considered the most promising: superconducting qubits and trapped-ion qubits.

Quantum computers based on superconducting qubits excel in the speed of gate operations (typically tens of

nanoseconds) and offer good scalability (a recent review of the state of the art in superconducting quantum computers

can be found in [4]). The qubits can be manufactured using well-established techniques developed for the production of

semiconductor chips. Gate fidelities are typically above 99%. On the other hand, tremendous effort is required for cooling,

since the processors must be kept at millikelvin temperatures. Decoherence times are rather short, and connectivity is

limited.

In comparison, gate operations of trapped-ion devices are very slow (for a review of ion-trap quantum computers,

see [5]). This is partially compensated by their very long decoherence times. They also feature excellent gate fidelities,

which implies that relatively little effort has to be spent on error-correction measures. Moreover, trapped-ion qubits are

fully connected. Trapped-ion quantum computers, in their original form, suffer from poor scalability. However, there are

several approaches, such as photonic links between traps and modular microchip-trap architectures with fast intermodule

ion transport, to overcome these issues [6–9].

In this work we will use trapped ionic rotors as qubits. Although these rotors are fictitious, they have the advantage

that their quantum mechanical description is simple. This text describes the implementation of a CNOT gate within this

framework.

We will frequently refer to the article Ion Trap Quantum Computers Part 1: 1-Qubit Gates as ”Part 1” [10]. The article

describes the quantum physics of the 1-qubit gates required to build a set of universal gates. It is strongly recommended to

become familiar with Part 1 before studying the present text. The article at hand, like Part 1, is heavily based on Chapter 7

of B. Zygelman’s A First Introduction to Quantum Computing and Information ([11] and [12], respectively). However, the

presentation here is much more detailed and deviates in some particulars from Zygelman’s presentation. We recommend to

use a Computer Algebra System (Mathematica©, Maple©, Maxima, ...) when reproducing the calculations.

2. 2-Qubit States

2.1 Tensor Products

This article deals with the targeted manipulation of the state of 2-qubit systems. Rotors, which are described in detail

in Part 1, will be used as qubits. Specifically, it will focus on the state of two ionized rotors, A and B, held in an ion trap.

The state of qubit A is denoted by |ψA〉 and that of qubit B by |ψB〉. The 2-qubit system is then described by symbols of

the form |ψA〉⊗ |ψB〉 or simply |ψA〉 |ψB〉.
Expressions of this type define the so-called tensor product of the two 1-qubit states |ψA〉 and |ψB〉. One of the most

important rules when calculating with tensor products is that the order of the factors must not be swapped (a very concise

summary of the definition and calculation rules for the tensor product can be found in Section 2.1.7 of [2], or in Section

3.1.2 of [3]). We will agree that the first factor always refers to rotor A and the second to rotor B. Then the identifiers A

and B are superfluous, and the tensor product can be written, e.g., in the form |ψ〉 |ψ ′〉. We will omit the product symbol

‘⊗’ between the two states in the following.

Scientific Insights 2 | Bernd Baumann



The most general 2-qubit states have the form

|ψAB〉=
1

∑
b,b′=0

|b〉
∣∣b′〉ψbb′ . (1)

They thus represent a superposition of tensor products of the respective basis states |b〉 and |b′〉 with expansion coefficients
ψbb′ . If ψbb′ = ψbψ ′

b′ (the expansion coefficients ψbb′ can be written as products of the expansion coefficients ψb and ψ ′
b′

of 1-qubit states), it follows that

|ψAB〉=
1

∑
b,b′=0

|b〉
∣∣b′〉ψbψ

′
b′ =

(
1

∑
b=0

|b〉ψb

)(
1

∑
b′=0

∣∣b′〉ψ
′
b′

)
= |ψA〉 |ψB〉

(the 2-qubit state |ψAB〉 can be written as products of the 1-qubit states |ψA〉 and |ψB〉). The corresponding states |ψAB〉 are
called product states. 2-qubit states for which this is not true are called entangled.

To clarify, a simple example for both cases will be given here. The 2-qubit states

1√
2
(|1〉 |1〉+ |0〉 |1〉) (2)

(ψ00 = 0, ψ01 = 1/
√

2, ψ10 = 0, ψ11 = 1/
√

2) and

1√
2
(|1〉 |0〉+ |0〉 |1〉) (3)

(ψ00 = 0, ψ01 = 1/
√

2, ψ10 = 1/
√

2, ψ11 = 0) appear very similar upon superficial inspection. However, the state from
Equation (2) can be brought into the form of a product:

1√
2
(|1〉+ |0〉) |1〉

(ψ0 = ψ1 = 1/
√

2, ψ ′
0 = 0,ψ ′

1 = 1). This is clearly not possible for state (3), and therefore, it is an entangled state.
Suppose qubit A is controlled by Alice and qubit B by Bob. We want to investigate what measurement results occur

when one of the two states given above is present. First, let us consider the product state from Equation (2). If Alice

performs a measurement on her qubit, the state collapses with equal probability to either |0〉 |1〉 or |1〉 |1〉. She obtains a
classical bit with a value of 0 or 1 as a measurement result with a probability of 1/2. (How the respective probabilities are

calculated is very nicely described in [3] Section 3.3). A subsequent measurement by Bob on his qubit will in both cases

yield a bit with a value of 1. The measurement results do not depend on the temporal sequence (“Alice measures before
Bob” or “Bob measures before Alice”).

When measuring the entangled state from Equation (3), Alice again finds bit values 0 or 1 with equal probability

(collapse to |0〉 |1〉 or |1〉 |0〉). However, Bob’s measurement result will now depend on the result of Alice’s measurement:

If Alice received a bit value of 1, Bob will get the value 0. Conversely, if Alice receives the value 1, Bob measures the
value 0. In other words: When measuring the entangled state, Alice’s and Bob’s measurement values are anti-correlated.

Such (anti-)correlations make entangled states very interesting for many modern applications of quantum physics. (More

on entanglement can be found, e.g., in [13] Chapters 7 and 8 or in [14] Chapter 11.) They are also essential for information

processing in quantum computers.
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In Part 1, equations of the type |φ〉=A |ψ〉 play an important role. Here,A denotes a linear operator that mediates

mappings between state vectors. Such equations will also be very present in this Part 2. However, the operators here must

effect mappings between states representing 2-qubit systems. Formally, this can be represented by

|φAB〉=A |ψAB〉 . (4)

An example is the exchange operator P (cf. [15] Section 7.1). This is defined by

P |ψ〉AB = P
1

∑
b,b′=0

|b〉
∣∣b′〉ψbb′ =

1

∑
b,b′=0

∣∣b′〉 |b〉ψbb′ .

To illustrate, let’s consider the effect of P on the two states in Equations (2) and (3): Applied to the product state, we get

P
1√
2
(|1〉 |1〉+ |0〉 |1〉) = 1√

2
(|1〉 |1〉+ |1〉 |0〉) .

If the exchange operator is applied to the entangled state in Equation (3), it does not change (P |ψAB〉= |ψAB〉).
In ion trap quantum computers, the qubits are individually addressed by laser radiation. These 1-qubit manipulations

are logically described by 1-qubit operators. As soon as two qubits are irradiated simultaneously, the overall effect on the

system must be described by an operator that can be expressed by 1-qubit operatorsAA andAB:

A := (AA⊗AB) or simply A=AA⊗AB.

Here, the definition of the tensor product of operators is given by the formula

(AA⊗AB) |ψA〉 |ψB〉= (AA |ψA〉)(AB |ψB〉)

(cf. [2] Section 2.1.7). Many 2-qubit operators cannot be described by tensor products of 1-qubit operators. A simple

example of this is the exchange operator P .

For the tensor product of states, we omitted the⊗-sign. For operators, this is not possible, because 1-qubit operators are

often defined by the sequential execution of two (or more) 1-qubit operators. Therefore,A⊗B andAB have completely

different meanings.

2.2 Kronecker Product

We are interested in the matrix representation of quantities defined via a tensor product. For example, the matrix

equation corresponding to Equation (4) would take the form

φ
AB

= Aψ
AB
.

The desired matrix representation is provided by the so-called Kronecker product (cf. [2] Section 2.1.7). The Kronecker

product of two matrices A and A′ is defined by (we use the same symbol for the Kronecker product A⊗B of two matrices

as for the tensor productA⊗B of two operators):
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A⊗A′ =


a11A′ a12A′ · · · a1nA′

a21A′ a22A′ · · · a2nA′

...
...

. . .
...

am1A′ am2A′ · · · amnA′

 with ai jA′ = ai j


a′11 a′12 · · · a′1q
a′21 a′22 · · · a′2q
...

...
. . .

...

a′p1 a′p2 · · · a′pq

 .

Here: ai j are the matrix elements of matrix A (a′i j analogously). Column vectors are a special case, namely m×1 matrices.

Since there is only one column, the column index can be omitted:

a⊗a′ =


a1a′

a2a′
...

ama′

 with aia′ = ai


a′1
a′2
...

a′p

 .

As an example, let us consider the column vectors representing the basis states. The Kronecker product of two column

vectors belonging to states |b〉 and |b′〉 with b,b′ ∈ {0,1} yields, for example, for the state |0〉 |0〉

(
1
0

)
⊗

(
1
0

)
=


1

(
1
0

)

0

(
1
0

)
=


1
0
0
0

 . (5)

Analogously, for the 2-qubit states |0〉 |1〉, |1〉 |0〉 and |1〉 |1〉, the column vectors are
1

(
0
1

)

0

(
0
1

)
=


0
1
0
0

 ,


0

(
1
0

)

1

(
1
0

)
=


0
0
1
0

 and


0

(
0
1

)

1

(
0
1

)
=


0
0
0
1

 . (6)

A general 2-qubit state is given by Equation (1) as

|ψ〉AB = |0〉 |0〉ψ00 + |0〉 |1〉ψ01 + |1〉 |0〉ψ10 + |1〉 |1〉ψ11

If we group the expansion coefficients into a column vector analogous to Part 1 Equation (13), we get

ψ
AB

=


ψ00

ψ01

ψ10

ψ11

 or ψ
AB

=


ψ1

ψ2

ψ3

ψ4


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In accordance with the results from Equations (5) and (6), the column vectors
1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 and


0
0
0
1



represent the states |0〉 |0〉, |0〉 |1〉, |1〉 |0〉, and |1〉 |1〉 respectively.
The generalization to 3-qubit states is trivial:

|ψ〉ABC = |0〉 |0〉 |0〉ψ000 + |0〉 |0〉 |1〉ψ001 + ...+ |1〉 |1〉 |1〉ψ111,

or

|ψ〉ABC = |0〉 |0〉 |0〉ψ1 + |0〉 |0〉 |1〉ψ2 + ...+ |1〉 |1〉 |1〉ψ8.

The assignment of coefficients to the corresponding column vector is done according to Table 1.

Table 1. Assignment of row/column index and basis state |b〉 |b′〉 |b′′〉. In Part 1, rows/columns were advantageously numbered by indices 0 and 1. This
advantage is lost with two or more qubits, and therefore we start counting from 1.

Row, Column Index 1 2 3 4 5 6 7 8  

bb′b′′ 000 001 010 011 100 101 110 111  

3. 2-Qubit Gates

In Part 1, we restricted our discussion to 1-qubit gates. To build a universal quantum processor, it is necessary to have

quantum gates available that can process multiple qubits. In Section 2, it was mentioned that the correlations of qubits

generated by entanglement are an important prerequisite for the functionality of quantum computers. With the help of the

CNOT gate, it is possible to entangle two qubits.

Like all quantum gates, the 2-qubit CNOT gate is defined by its effect on the basis states. If the corresponding operator

is denoted by the symbol CX , the defining formulas are

CX |0〉 |0〉= |0〉 |0〉 , CX |0〉 |1〉= |0〉 |1〉 , CX |1〉 |0〉= |1〉 |1〉 and CX |1〉 |1〉= |1〉 |0〉 .

For the general state, this yields

|φ〉 = CX |ψ〉=CX (ψ00 |0〉 |0〉+ψ01 |0〉 |1〉+ψ10 |1〉 |0〉+ψ11 |1〉 |1〉)

= ψ00 |0〉 |0〉+ψ01 |0〉 |1〉+ψ11 |1〉 |0〉+ψ10 |1〉 |1〉 . (7)

In the second qubit (target qubit), the coefficients are swapped if the first qubit (control qubit) has the value 1. If the control
qubit has the value 0, the target qubit does not change. In other words: The control qubit determines whether a quantum
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NOT gate (symbol X) is executed on the target qubit or not (cf. Part 1 Section 7.1). From the matrix representation

φ =CX ψ of Equation (7), the matrix CX is easily read off:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

In a later section, we will need the Controlled-Z gate CZ . It stands in an analogous relationship to the 1-qubit gate Z

as the CNOT gate does to the gateX . The Z gate is defined by

Z |0〉= |0〉 and Z |1〉=−|1〉

and has the matrix representation

Z =

(
1 0
0 −1

)
= σ z

(σ z is a Pauli matrix).

The Controlled-Z gate is defined as by

CZ |0〉 |0〉= |0〉 |0〉 , CZ |0〉 |1〉= |0〉 |1〉 , CZ |1〉 |0〉= |1〉 |0〉 and CZ |1〉 |1〉=−|1〉 |1〉 .

For the general state, it follows:

|φ〉 = CZ |ψ〉=CZ (ψ00 |0〉 |0〉+ψ01 |0〉 |1〉+ψ10 |1〉 |0〉+ψ11 |1〉 |1〉)

= ψ00 |0〉 |0〉+ψ01 |0〉 |1〉+ψ10 |1〉 |0〉−ψ11 |1〉 |1〉

(the control qubit determines whether a Z-gate is executed on the target qubit or not). The matrix representation of CZ is

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (8)

A formula we will need later is

CX = (Z ⊗G)CZ (Z ⊗G) . (9)

Here, the Kronecker product of the representation matrices of the Z-gate and the Hadamard gateG (Part 1 Section 7.2) is

needed twice. It holds that

Z ⊗G =
1√
2


1 1 0 0
1 −1 0 0
0 0 −1 −1
0 0 −1 1

 .
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In Controlled gates, the output state of the target qubit is determined by the input state of the control qubit. It is

thus physically clear that there must be an interaction between the two qubits. This could occur, for example, through

the exchange of photons. Cirac and Zoller devised another method, which will be described below using the example of

two rotors [16]. It is based on the interplay of electrostatic repulsion of the ionized rotors, the attractive force of the ion

trap, and especially the recoil of photons involved in laser-induced transitions. The latter causes the rotors to move and

subsequently perform oscillations around their equilibrium position.

4. Rotors Without Laser Excitation

Up to now, the discussion of qubit states and gates has been kept very general, i.e., independent of a specific physical

realization of qubits. From this point on, the considerations will be based on ionized rotors as qubits, with the properties

defined in Part 1.

4.1 Quantum Physics of Stationary Rotors

We assume that two identical rotors A and B are present. The corresponding Hamilton operators are HR
A andHR

B .

Their associated matrix representations are HR
A = HR

B =− 1
2 h̄ω1 σ z (cf. Part 1 Equation (18)). The rotors are held in an

ion trap. The attraction due to the ion trap potential balances the electrostatic repulsion of the ions. This determines an

equilibrium distance for the two rotors. Initially, we will consider the case where the ions are at rest in this equilibrium

position (cf. Figure 1).

Figure 1. System consisting of two ionized rotors A and B

The Hamiltonian of the system consisting of the two rotors is (for formal consistency, each term in a sum with tensor

products must have a suitable number of factors. To achieve this, the tensor factors 1 are inserted):

HR =HR
A ⊗1+1⊗HR

B . (10)

From this, the associated matrix representation is

HR =−1
2

h̄ω1
(
σ z ⊗1+1⊗σ z

)
=−1

2
h̄ω1

[(
11 0
0 −11

)
+

(
1σ z 0

0 1σ z

)]
,

summarized as

HR = h̄ω1


−1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 1

= h̄ω1 diag(−1,0,0,1) . (11)
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Here, after the second equality sign, a notation was used that allows diagonal matrices to be written compactly and thus

space-savingly without loss of information, both here and in the following.

The energy eigenvalues for the 2-rotor system can be read from the diagonal elements of the matrix HR. They are

E1 = −h̄ω1 = − 3h̄2

2mR2 (both rotors in the ground state), E2 = E3 = 0 (one rotor in the ground state and one rotor in the

excited state, degeneracy), and E4 =+h̄ω1 =+ 3h̄2

2mR2 (both rotors in the excited state) (The energy eigenvalues are shifted

by a constant value on the energy axis, as a term in the Hamiltonian was omitted. This additive constant results in an

insignificant phase factor and can be ignored (Part 1 Section 6.1)). The corresponding eigenvectors are given by the column

vectors shown in Equations (5) to (6).

The time evolution of the system results from the Schrödinger equation, i.e., from the solution of the system of

differential equations

ih̄ψ̇(t) = HR
ψ(t).

This system of differential equations with the diagonal matrix from formula (11) is easy to solve. We write the solution in

the form

ψ(t) =UR(t)ψ(0)

with the time evolution matrix

UR(t) = diag
(

e+iω1t ,1,1,e−iω1t
)
.

4.2 Classical Dynamics of Rotors in the Ion Trap Potential

Until now, we have assumed the rotors are statically at rest in their equilibrium positions. Now, we will allow for

small movements around the equilibrium position. Due to the repulsive Coulomb force, the movement of one ion leads to

a time-varying force on the other ion.

To prepare for the quantization of the system, the classical dynamics will be described within the framework of

Hamiltonian formalism. Here, we will assume that the rotational motion of the two rotor electrons occurs in the x−y plane.
Furthermore, for simplicity, the motion of the two rotors will be restricted to the x-axis. The Hamiltonian function of the
overall system is then

H(pA, pB,xA,xB,LA,LB) =
p2
A

2M
+

p2
B

2M
+V (|xA− xB|)+

L2
A

2mR2 +
L2
B

2mR2 .

The canonical coordinates include the translational momenta pA = MẋA and pB = MẋB of rotor A and B in the x-direction
(M is the total mass of a rotor), the rotor coordinates xA and xB, and the angular momenta LA and LB for the rotor electrons

(m is the mass of a rotor electron). The potential V (|xA− xB|) is composed of a repulsive, electrostatic component of the
ions and the trap potential (θA and θB play no role).

To simplify the equations of motion derived from the Hamiltonian function, various coordinate transformations

are performed: Instead of xA and xB, we use the center-of-mass coordinate xS := 1
2 (xA+ xB) and the inter-ion distance

s := xA− xB. This yields the corresponding velocities

ẋS =
1
2
(ẋA+ ẋB) i.e. vS =

1
2
(vA+ vB) and ṡ = ẋA− ẋB i.e. vr = vA− vB.

Rearranging gives

vA/B = vS±
1
2

vr.
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To determine the canonical momenta corresponding to these velocities, the Lagrangian function is needed:

L (xS,s, ẋS, ṡ, θ̇A, θ̇B) = Ekin(ẋS, ṡ, θ̇A, θ̇B)−V (xS,s)

(the rotational energy counts as kinetic energy). Since the potential V does not depend on the generalized velocities, it

follows that

pS :=
∂L

∂ ẋS
=

∂Ekin

∂vS
and pr :=

∂L

∂ ṡ
=

∂Ekin

∂vr
.

The kinetic energy of the ions is given by

Ekin =
1
2

Mv2
A+

1
2

Mv2
B.

Expressed in terms of center-of-mass and relative velocities, this yields

Ekin = Mv2
S+

1
4

Mv2
r

and consequently

pS = 2MvS and pr =
1
2

Mvr.

We will assume that the system consisting of the two rotors is at rest in the ion trap: vS = 0 and consequently pS = 0
(Here we deviate from Cirac and Zoller’s original approach). The system’s center of mass is then stationary, and the

two ions can only oscillate in opposing directions. The Hamiltonian function, expressed in terms of the new generalized

coordinates and the reduced mass µ = 1
2 M, is then

H(s, pr,LA,LB) =
p2

r

2µ
+V (|s|)+ L2

A

2mR2 +
L2
B

2mR2 .

Now, the potentialV (|s|) will be expanded in a Taylor series. For this, the equilibrium positions of the two ions x0
A and

x0
B and their equilibrium distance s0 = x0

A−x0
B are needed. The expansion of the potential around the equilibrium position is

V (s) =V (s0)+
∂V
∂ s

∣∣∣∣
s0

(s− s0)+
1
2

∂ 2V
∂ s2

∣∣∣∣
s0

(s− s0)
2 + ...

The additive constant V (s0) is physically irrelevant. The linear term vanishes because the potential must be horizontal

at the equilibrium position. The factor ∂ 2V
∂ s2

∣∣∣
s0
has the meaning of a spring constant D. With the deviation u := s− s0 of

the inter-ion distance s from the equilibrium distance s0 the Hamiltonian function simplifies to (apparently vu = vr and

consequently pu = pr):

H(u, pu,LA,LB) = HO(u, pu)+HR
A(LA)+HR

B (LB)

with the oscillator component

HO(u, pu) =
p2

u

2µ
+

1
2

Du2

Scientific Insights 10 | Bernd Baumann



and the contributions of the two rotors to the rotational energy

HR
A(LA) =

L2
A

2mR2 , HR
B (LB) =

L2
B

2mR2 .

4.3 Quantization of the Oscillator

This subsection describes the quantization of the harmonic oscillator. We will be very brief, as this topic is extensively

covered in every quantum physics textbook (see, e.g., [15] Section 2.3).

In quantization, the two canonical variables u and pu must be converted into operators. Formally:

u → u pu → pu.

For the operators u and pu, the canonical commutation relation holds:

[u,pu] = ih̄1. (12)

After introducing the so-called annihilation and creation operators a and a† by

a :=

√
µΩ0

2h̄

(
u+

i
µΩ0

pu

)
and a† :=

√
µΩ0

2h̄

(
u− i

µΩ0
pu

)
with Ω0 :=

√
D
µ
, (13)

the commutation relation from Equation (12) can be converted into[
a,a†]= 1.

The Hamiltonian operator of the oscillator

HO =
p2

u

2µ
+

1
2

Du2

then becomes

HO = h̄Ω0

(
a†a+

1
2
1

)
. (14)

The spectrum of the Hamiltonian operatorHO consists of infinitely many equidistant values

En =

(
n+

1
2

)
h̄Ω0 with n = 0,1,2, ...

We denote the corresponding energy eigenstates by |En〉. It can be shown that adjacent energy eigenstates are reached by
applying the creation or annihilation operators:

a |En〉=
√

n |En−1〉 and a† |En〉=
√

n+1 |En+1〉 . (15)

For n = 0, there is a special case. It holds that a |E0〉= 0.
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Energy can only be added to or removed from the oscillator, consisting of the two coupled ions, in portions (or quanta)

with a value of h̄Ω0. In common parlance: The oscillator in state |En〉 contains n phonons. The ground state |E0〉 contains
0 phonons. Its energy content is E0 =

1
2 h̄Ω0 (ground state energy).

As in the case of the rotors, we restrict the accessible state space to two states and assign the bit value 0 to the

ground state |E0〉 and the bit value 1 to the first excited state |E1〉 (cf. Part 1, end of Section 3). Using formulas (15)

and the orthogonality property
〈
Ei
∣∣E j
〉
= δi j, the matrix representation of the creation and annihilation operators can be

determined in the basis defined by |E0〉 and |E1〉 (the matrices σ− and σ+-were introduced in Part 1 Section 6.2):

a =

(
0 1
0 0

)
= σ− and a† =

(
0 0
1 0

)
= σ+. (16)

The Hamiltonian matrix (we follow Richard Feynman and refer to the matrix representation of a Hamiltonian operator

as the Hamiltonian matrix (cf. [17] Vol. 3 Section 8.5). Usually, ”Hamiltonian matrix” refers to something else) from

Formula (14) is thus easy to calculate. It results in

HO =
1
2

h̄Ω0

(
1 0
0 3

)
.

A decomposition yields

HO = h̄Ω0

((
1 0
0 1

)
− 1

2

(
1 0
0 −1

))
= h̄Ω0

(
1− 1

2
σ z

)
.

As in Part 1, end of Section 6.1, the first (diagonal) term can be omitted, as it only contributes a phase factor to the time

evolution. This leads to

HO =−1
2

h̄Ω0σ z. (17)

There are alternatives to this procedure for calculating the Hamiltonian matrix: The second possibility is that the

vacuum energy term 1
2 h̄Ω01 in Formula (14) is omitted. The Hamiltonian matrix is then

HO = h̄Ω0

(
0 0
0 1

)
. (18)

Decomposition of the matrix in the usual way yields

HO =
1
2

h̄Ω0

((
1 0
0 1

)
−

(
1 0
0 −1

))
=

1
2

h̄Ω0
(
1−σ z ). (19)

Omitting the diagonal term again leads to the matrix from Equation (17). It also becomes clear that the vacuum energy

term only contributes to the diagonal part of the matrix and thus to the phase factor.

The third variant is to omit the vacuum energy term but retain the resulting diagonal term, i.e., to work with matrices

(18) or (19). The advantage of this variant is that the matrices of the systems discussed below become particularly simple.

We will therefore use variant 3.
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4.4 Quantum Physics of the Free Spring-Coupled 2-Rotor System

The total Hamiltonian operator for the system consisting of two rotors coupled via a potential with the characteristics

of a harmonic oscillator comprises three parts: The Hamiltonian operator for the two rotors (Equation (10)) is to be

supplemented by the oscillator component from the previous section. This yields

H0 =HO⊗1⊗1+1⊗HR
A ⊗1+1⊗1⊗HR

B . (20)

The states are to be described by a 3-fold tensor product |ψP〉 |ψA〉 |ψB〉 with |ψP〉= cp
0 |0〉+ cp

1 |1〉. Here, |ψP〉 stands for
the phonon states, and |ψA/B〉 are the internal rotor states of rotor A and B. We denote the corresponding basis states as

|bP〉 |bA〉 |bB〉.
Using Equations (11) and (19), the total Hamiltonian matrix from Formula (20) is obtained using the Kronecker

product:

H0 = diag(−h̄ω1,0,0, h̄ω1, h̄(Ω0 −ω1) , h̄Ω0, h̄Ω0, h̄(Ω0 +ω1)) . (21)

On the main diagonal, from top-left to bottom-right, are the energy eigenvalues of the 0-phonon states |0〉 |bA〉 |bB〉 and the
1-phonon states corresponding to |1〉 |bA〉 |bB〉.

5. Rotors With Laser Excitation

5.1 Hamiltonian of Laser Field-Rotor Interaction

A total of four lasers are used to excite the system: two each for exciting the rotor states of rotor A and rotor B

(designated L1A and L1B) and two for shifting rotor states to phonon states or vice versa (designated L2A and L2B), see

Figure 2. The following will focus on finding a series of pulses from the different lasers whose overall effect manipulates

the qubit states to achieve the effect of a CNOT gate. More precisely, we must limit ourselves to following Cirac and

Zoller’s ideas and verifying that their approach indeed leads to the desired result.

Figure 2. Laser setup for the 2-qubit gate. The two lasers L1A and L1B radiate along the z-axis and serve to excite the internal rotor states (cf. Part 1
Sections 3 and 7). The beams of lasers L2A and L2B run in the x− y plane. φ is the angle between the radiation direction and the x-axis. The two red
spheres represent the two ions in the ion trap (not shown). The diameters of the beams must be larger than they appear in the figure (cf. Part 1 Section 3).
L1A/B, L2A, and L2B radiate at different wavelengths, indicated by color. The cubes have no physical meaning and are introduced to guide the eye.

Lasers L2A and L2B each produce linearly polarized plane waves. The mathematical description of the electric field

is (caution, factor of 2 in amplitude compared to Zygelman)

~E(~r, t) =~ε Ê cos
(

ωt −~k ·~r+δ

)
.
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Unlike the waves of L1A/B type lasers described in Part 1, this wave propagates in the x−y plane. Therefore, we write the
polarization vector~ε and the wave vector~k in the form

~k = kx~ex + ky~ey and ~ε = εx~ex + εy~ey.

For electromagnetic waves in vacuum, the dispersion relation ω = ck applies, with wave number k = |~k| and the speed of
light c.

The Hamiltonian function for the interaction of the radiation field with the electron in rotor A is (cf. Part 1 Section 6.2)

HW =−e~rA ·~E(~rA, t). (22)

The position vector of the electron of rotor A appearing here is given by

~rA = (xA+RcosθA)~ex +RsinθA~ey

(see Figure 1). We now assume that the wavelength of the laser radiation is significantly larger than the diameter of the rotor,

i.e., λ � 2R. In this case, the electric field approximately does not change over the extent of the rotor. Approximately, the
electric field at the electron’s location can then be replaced by the electric field at the center of the rotor: ~E(~rA, t)≈ ~E(xA~ex, t).
For the scalar product in the argument of the time-dependent cosine factor of ~E(~rA, t), it then holds that

~k ·~rA ≈ kxxA.

This is the so-called dipole approximation (cf. [18] Section 5.1). The Hamiltonian function from Equation (22) thus

becomes

HW = −e [(xA+RcosθA)~ex +RsinθA~ey] · (εx~ex + εy~ey) Ê cos(ωt − kxxA +δ )

= −e [εx(xA+RcosθA)+ εyRsinθA] Ê cos(ωt − kxxA +δ ) .

Because (the symbol <)
(
~a,~b
)
denotes the angle between the two vectors~a and~b)

εx =~ex ·~ε = cos <)(~ex,~ε) = cos(φ +90◦) =−sinφ and εy =~ey ·~ε = cos <)(~ey,~ε) = cosφ

this can be rewritten as

HW = eÊ [(xA+RcosθA)sinφ − RsinθA cosφ ]cos(ωt − kxxA +δ ) . (23)

From the definitions in Section 4.2, it follows that xA− x0
A = 1

2 (s− s0) =
1
2 u. If the equilibrium position of rotor A is

chosen as the coordinate origin, then x0
A = 0 and consequently xA = 1

2 u. Thus, from Equation (23)

HW(u,θA, t) = eÊ
[(

1
2

u+RcosθA

)
sinφ − RsinθA cosφ

]
cos
(

ωt − 1
2

kxu+δ

)
. (24)

For further simplification, the last factor is reformulated using an addition theorem for trigonometric functions:
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cos
(

ωt − 1
2

kxu+δ

)
= cos(kxu/2)cos(ωt +δ )+ sin(kxu/2)sin(ωt +δ ) .

Assuming that the wavelength of the radiation is much larger than the displacement u/2 of rotor A from the equilibrium

position, it follows that |ukx| � 1. Therefore

cos(kxu/2) = 1+O((u/2)2), sin(kxu/2) = kxu/2+O((u/2)3).

Substituting into Equation (24) and multiplying out yields

HW(u,θA, t) = eÊ
[

1
2

sinφ cos(ωt +δ )u+Rsinφ cos(ωt +δ )cosθA−Rcosφ cos(ωt +δ )sinθA (25)

+
1
2

Rsinφ sin(ωt +δ )kxucosθA−
1
2

Rcosφ sin(ωt +δ )kxusinθA−
1
4

sinφ sin(ωt +δ )kxu2
]
.

5.2 Quantization

To quantize the system, the canonical variables must again be promoted to operators:

u → u⊗1⊗1 cosθA → 1⊗ cosθA⊗1 sinθA → 1⊗ sinθA⊗1

usinθA → u⊗ sinθA⊗1 ucosθA → u⊗ cosθA⊗1 u2 → u2 ⊗1⊗1.

The operator u can be expressed by the creation and annihilation operators a† and a (cf. Equation (13)):

u=

√
h̄

2µΩ0

(
a+a†) .

The matrix representation of the operator u is then obtained using Equation (16) as

u =

√
h̄

2µΩ0

(
0 1
1 0

)
=

√
h̄

2µΩ0
σ x.

Since u2 ∼ σ2
x and σ2

x = 1, it follows that

u2 =
h̄

2µΩ0
1.

We have already calculated the matrix representation of the operators sinθA and cosθA in the basis |bA〉 (cf. Part 1
Section 6.2). The results are

sinθA = 0 and cosθA =
1
2

σ x.
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In summary, the interaction Hamiltonian matrix from Equation (25) takes the form

HW = eÊ

[√
h̄

8µΩ0
sinφ cos(ωt +δ )(σ x ⊗1⊗1)+

1
2

Rsinφ cos(ωt +δ )(1⊗σ x ⊗1)

+
1
4

√
h̄

2µΩ0
Rkx sinφ sin(ωt +δ )(σ x ⊗σ x ⊗1)− h̄kx

8µΩ0
sinφ sin(ωt +δ )(1⊗1⊗1)

]
.

The first term describes the excitation of phonons by the (classical) radiation field of laser L2A. Such excitations are not

required here, and therefore this term will not be considered further. The second term describes the excitation of the internal

rotational state of rotor A by the radiation field. For this purpose, the laser described in Part 1 (in the current context, this is

L1A) is available, and thus we will also ignore this term. The last (fourth) term only causes a laser-induced phase shift and

is likewise ignored.

Only the third term is of interest, as it describes the laser-driven transitions between internal rotational states and phonon

excitations (in application, it must be ensured that the combined effects caused by the ignored terms do not superimpose

and thus nullify the desired effects of the third term). The interaction Hamiltonian matrix is thus approximately reduced to

HW =
1
4

√
h̄

2µΩ0
eÊRk sinφ cosφ sin(ωt +δ )(σ x ⊗σ x ⊗1) .

We have also used kx = k cosφ .

At a laser incidence angle of φ = 45◦, the product sinφ cosφ has a maximum value of 1/2, thus achieving maximum
interaction. Therefore, we will work with this incidence angle in the following. The interaction Hamiltonian matrix is then

HW = h̄Ω1 sin(ωt +δ )(σ x ⊗σ x ⊗1) with Ω1(k) :=
eÊR

8
√

2µ h̄Ω0
k. (26)

The parameter Ω1 thus depends on the angular frequency ω of the radiation via the dispersion relation ω = ck.
With the usual decomposition of the Pauli matrix

σ x = σ++σ−

it follows that

σ x ⊗σ x ⊗1 = (σ x ⊗σ x)⊗1 =
[(

σ++σ−
)
⊗
(
σ++σ−

)]
⊗1

=
(
σ+⊗σ++σ+⊗σ−+σ−⊗σ++σ−⊗σ−

)
⊗1.

The interaction Hamiltonian matrix thus finally takes the form

HW = h̄Ω1 sin(ωt +δ )
[(

σ+⊗σ++σ+⊗σ−+σ−⊗σ++σ−⊗σ−
)
⊗1
]
. (27)
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5.3 Transition to Dirac’s Interaction Picture

In the following, we proceed analogously to Part 1 Section 6.3: The Schrödinger differential equation system is

ih̄ψ̇ = Hψ with H = H0+HW. (28)

Here, H0 is used according to Formula (21) and HW according to Formula (27). The interaction part of the Hamiltonian

operator is explicitly time-dependent, and therefore it is necessary to switch to the Dirac or interaction picture of quantum

physics (see [15] Section 5.5). All steps from Part 1 Section 6.3 can be easily generalized to the present case. ψ is an

8-component column vector, which results as the Kronecker product of the respective column vectors for the oscillator and

the two rotors.

In the interaction picture, an ansatz of the form

ψ(t) =U0(t)ψ
W(t) with U0(t) = exp(−iH0t/h̄) (29)

is made. Since H0 is diagonal, U0(t) can be easily determined using a power series expansion of the exponential function
and is

U0(t) = diag
(

eiω1t ,1,1,e−iω1t ,ei(ω1−Ω0)t ,e−iΩ0t ,e−iΩ0t ,e−i(ω1−Ω0)t
)
.

From this and using Equation (21), it is clear that

ψ̇(t) = U̇0(t)ψ
W(t)+U0(t)ψ̇

W(t) =− i
h̄

H0U0(t)ψ
W(t)+U0(t)ψ̇

W(t). (30)

Substituting this into the system of differential equations from Equation (28) and using Formula (29) yields

ih̄U0(t)ψ̇
W(t) = HWU0(t)ψ

W(t).

Multiplication by U -1
0 (t) from the left gives

ih̄ψ̇
W(t) =U -1

0 (t)H
WU0(t)ψ

W(t). (31)

This equation can be understood as the Schrödinger equation for the wave function ψW(t) with the Hamiltonian matrix
(the ”D” in honor of Paul Adrien Maurice Dirac, August 1902 to 20 October 1984):

HD :=U -1
0 (t)H

WU0(t). (32)

By explicit calculation, it is easy to see that

U -1
0 (t)

(
σ±⊗σ±⊗1

)
U0(t) = e±iΩ0t

σ±⊗ e±iω1t
σ±⊗1

holds, and therefore the matrix from Equation (32) takes the form

HD = h̄Ω1 sin(ωt +δ )
[(

e+iΩ0t
σ+⊗ e+iω1t

σ++ e+iΩ0t
σ+⊗ e−iω1t

σ−

+e−iΩ0t
σ−⊗ e+iω1t

σ++ e−iΩ0t
σ−⊗ e−iω1t

σ−

)
⊗1
]
. (33)
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The factor sin(ωt +δ ) is rewritten using Euler’s formula:

sin(ωt +δ ) =− i
2

(
e+i(ωt+δ )− e−i(ωt+δ )

)
=− i

2

(
e+iωte+iδ − e−iωte−iδ

)
.

If the angular frequency of the radiation is now tuned to the transition between |0〉 |1〉 |b′′〉↔ |1〉 |0〉 |b′′〉 (The contents
of qubit A and the phonon qubit are exchanged, cf. Table 1), i.e., to the value ω = ω1 −Ω0, then

sin(ωt +δ ) =− i
2

(
e+iω1te−iΩ0te+iδ − e−iω1te+iΩ0te−iδ

)
.

As an auxiliary calculation, we multiply the first term on the right side of the preceding expression by the content of the

parenthesis on the right side of Equation (33):

e+iω1te−iΩ0te+iδ
(

e+iΩ0t
σ+⊗ e+iω1t

σ++ e+iΩ0t
σ+⊗ e−iω1t

σ−

+e−iΩ0t
σ−⊗ e+iω1t

σ++ e−iΩ0t
σ−⊗ e−iω1t

σ−

)

= e+iδ
(

σ+⊗ e+i2ω1t
σ++σ+⊗σ−+ e−i2Ω0t

σ−⊗ e+i2ω1t
σ++ e−i2Ω0t

σ−⊗σ−

)
.

We proceed analogously with the second part:

−e−iω1te+iΩ0te−iδ
(

e+iΩ0t
σ+⊗ e+iω1t

σ++ e+iΩ0t
σ+⊗ e−iω1t

σ−

+e−iΩ0t
σ−⊗ e+iω1t

σ++ e−iΩ0t
σ−⊗ e−iω1t

σ−

)

= −e−iδ
(

e+i2Ω0t
σ+⊗σ++ e+i2Ω0t

σ+⊗ e−i2ω1t
σ−+σ−⊗σ++σ−⊗ e−i2ω1t

σ−

)
.

For the two resulting expressions, we again apply the Rotating Wave Approximation as in Part 1 (cf. [14] Section 4.2 and

[18] Section 5.1.2)) and omit all time-dependent terms. Substituting these intermediate results into Equation (33) yields

HD =− i
2

h̄Ω1

[(
e+iδ

σ+⊗σ−− e−iδ
σ−⊗σ+

)
⊗1
]
. (34)

Here, the term proportional to σ+⊗σ− describes the creation of a phonon and the simultaneous transition of rotor A to the

ground state, and the term proportional to σ−⊗σ+ describes, conversely, the annihilation of a phonon and the excitation

of rotor A.

The differential equations (31) with the matrix HD from (34) are either trivial (ψ̇i(t) = 0) or of the same type as those
in Part 1 Section 6.4:

ψ̇
W
3 (t) =−1

2
Ω1e−iδ

ψ
W
5 (t) and ψ̇

W
5 (t) =

1
2

Ω1e−iδ
ψ

W
3 (t),

ψ̇
W
4 (t) =−1

2
Ω1e−iδ

ψ
W
6 (t) and ψ̇

W
6 (t) =

1
2

Ω1e−iδ
ψ

W
4 (t).
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We express the solution again in the form

ψ
W(t) =UW(t)ψW(0). (35)

The matrix UW(t) is

UW
A (t) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 cos

( 1
2 Ω1t

)
0 e−iδA sin

( 1
2 Ω1t

)
0 0 0 0

0 0 0 cos
( 1

2 Ω1t
)

0 e−iδA sin
( 1

2 Ω1t
)

0 0 0
0 0 −eiδA sin

( 1
2 Ω1t

)
0 cos

( 1
2 Ω1t

)
0 0 0 0

0 0 0 −eiδA sin
( 1

2 Ω1t
)

0 cos
( 1

2 Ω1t
)

0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


. (36)

At the beginning of Section 5.1, we agreed to initially irradiate only rotorA. To remind us of this, we have now appended

the identifier A to the time evolution matrix and the parameter δ . This is necessary because we will next turn to the

irradiation of rotor B with laser L2B, which can be operated with a different phase angle δB. It would actually be appropriate

to also label the parameter Ω1 with the identifier A, because the two lasers L2A and L2B can be operated with different

field strengths Ê and different angular frequencies ω . The latter affects the wave number k via the dispersion relation and

thus Ω1. To keep the notation clear, we have omitted the identifier for Ω1.

For reasons we will discuss shortly, we have extended the matrix UW
A by a 9th row and a 9th column. Consequently,

the column vectors ψW(0) and ψW(t) must also be supplemented by the row ψW
9 (0) and ψW

9 (t). The extension is trivial
and does not affect the first 8 rows of ψW(t). It is purely formal.

The Cirac-Zoller mechanism requires that we introduce an additional auxiliary state when irradiating rotor B. For this

purpose, we choose the state |0〉 |0〉 |2〉 (no phonons, rotor A in the ground state, rotor B in the second excited state). The

radiation from laser L2B should be set to the angular frequency for the transition from state |1〉 |0〉 |0〉 to |0〉 |0〉 |2〉 and
vice versa. Considering these transitions requires the above-mentioned extension of the matrices and column vectors by

one row/column (the formally correct procedure for considering the auxiliary state would be to extend the representation

matrix of the Hamiltonian operator for rotor B by one row and one column. Through the Kronecker product, this would

then result in 12×12 matrices with rows and columns that are not used. This overhead is to be avoided here).

The entire procedure performed for the irradiation of rotor A can now be repeated analogously for the irradiation of

rotor B. The interaction Hamiltonian operator must be adjusted accordingly. The associated matrix must be extended to a

9×9 matrix. Its non-zero elements are

HD
59 =

i
2

h̄Ω1e+iδB und HD
95 =− i

2
h̄Ω1e−iδB .

We spare the details and only present the result:
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UW
B (t) =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 cos

( 1
2 Ω1t

)
0 0 0 eiδB sin

( 1
2 Ω1t

)
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 −e−iδB sin

( 1
2 Ω1t

)
0 0 0 cos

( 1
2 Ω1t

)


. (37)

With this, we have everything to build the pulse sequence for a CNOT gate.

6. The CNOT Protocol

Before we delve into the discussion of the pulse sequence needed to realize a CNOT gate, it is useful to recall some

elementary properties of time evolution matrices. For time evolution matrices, the following holds (cf. [15] Section 2.2)

ψ(t) =U(t, t0)ψ(t0) with U(t, t0) := exp(−iH (t − t0)/h̄) .

From this, it can be seen that the time evolution matrix depends on the length of the time interval and the representation

matrix of the Hamiltonian operator that describes the system. The time evolution matrices used above are thus a special

case and apply for the case t0 = 0. Formally correct, one should write U0(t,0), UW(t,0) etc. instead of U0(t), UW(t) and
similar. A further property of time evolution matrices is that they can be split according to

U(ti+2, ti) =U(ti+2, ti+1)U(ti+1, ti) for ti+2 > ti+1 > ti.

To realize a CNOT gate, we now proceed as follows: With the help of the gates described in Part 1 (laser L1A and

L1B), qubits A and B are prepared, i.e., brought into the desired state (the superscript T denotes the transposed vector).

ψ(0) = (ψ1(0),ψ2(0),ψ3(0),ψ4(0),0,0,0,0,0)
T .

This notation expresses that the occurence of this state defines the origion of the time axis (t = 0). Now, the two qubits are
to be entangled using a CNOT gate. The following procedure is suitable for this: The two qubits are irradiated according

to a scheme with laser radiation from Lasers L2A and L2B. From time t = 0 to time t1, rotor A is irradiated. We choose the

time interval for irradiation as TA := t1 −0 = π/Ω1 (π-pulse).

In the subsequent time interval (t1 to t2), rotor B is irradiated, where TB := t2 − t1 = 2π/Ω1 (2π-pulse). Afterwards,

rotor A is irradiated again from t2 to t3 with t3 − t2 = TA (π-pulse). From t3 = 2TA+TB = 4π/Ω1 to t, both lasers are

switched off. This means Ω1 = 0, because Ω1 is proportional to Ê. From the Formulas (36) and (37), it can be inferred that

UW = 1 then holds. Overall, we get

UW(t,0) =UW(t, t3)UW(t3, t2)UW(t2, t1)UW(t1,0) = 1 UW
A32

UW
B21

UW
A10
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with

UW
A10

=UW
A32

=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 e−iδA 0 0 0 0
0 0 0 0 0 e−iδA 0 0 0
0 0 −eiδA 0 0 0 0 0 0
0 0 0 −eiδA 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


and

UW
B21

= diag(1,1,1,1,−1,1,1,1,−1) .

Thus, the resulting diagonal matrix is

UW(t,0) = diag(1,1,1,−1,−1,−1,1,1,−1) .

To determine the complete time evolution from the initial state ψ(0) to the final state ψ(t), the matrix productUW(t,0)
must be formed with (the 9th column/row originates from the matrix element H0

99 = h̄ω2 of the auxiliary state. The specific

value of ω2 is not needed).

U0(t) = diag
(

eiω1t ,1,1,e−iω1t ,ei(ω1−Ω0)t ,e−iΩ0t ,e−iΩ0t ,e−i(ω1−Ω0)t ,e−iω2t
)

according to Equations (35) and (29). The result is

U(t,0) =U0(t,0)U
W(t,0) = diag

(
eiω1t ,1,1,−e−iω1t ,−ei(ω1−Ω0)t ,−e−iΩ0t ,e−iΩ0t ,e−i(ω1+Ω0)t ,−e−iω2t

)
.

From this, it becomes clear that for t ≥ t3 and t = tn := 2πn/ω1 with an integer n, the time evolution matrix is given by

U(tn,0) = diag
(

1,1,1,−1,−ei2π

(
1−Ω0

ω1

)
,−e−i2π

Ω0
ω1 ,e−i2π

Ω0
ω1 ,e−i2π

(
1+Ω0

ω1

)
,−e−i2π

ω2
ω1

)
. (38)

The 4× 4-matrix in the upper left corner of the matrix U(tn,0) refers to the subspace spanned by the basis states
|0〉 |0〉 |0〉, |0〉 |0〉 |1〉, |0〉 |1〉 |0〉, and |0〉 |1〉 |1〉 (0-Phonon-Subspace (the auxiliary state corresponding to row/column 9
also contains 0 phonons, but is not a qubit state)). It is identical to the matrix in Equation (8). This means that the qubit

manipulations performed in the 0-phonon subspace in the time interval from t = 0 to t = tn realize a Controlled-Z gate.

Our goal is to construct a CNOT gate. This is achieved by considering CX = (Z ⊗G)CZ (Z ⊗G) (Equation (9)). For this,

we apparently need a manipulation of the qubits that corresponds to the matrix Z ⊗G. To this end, rotor B is irradiated

with laser L1B in the time interval from t =−tG to t = 0 as described in Part 1 Section 7.2. This applies a Hadamard gate

to qubit B. In contrast to what was said above, the preparation of the initial state must therefore already be completed at

time t =−tG:

ψ(−tG) = (ψ1(−tG),ψ2(−tG),ψ3(−tG),ψ4(−tG),0,0,0,0,0)
T . (39)
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What happens to rotor A during this period? Assuming we leave rotor A to itself for the duration tG = π/ω1 (laser

L1A not active), the dynamics are described by the time evolution matrix

UA(t) =

(
eiω1t/2 0

0 e−iω1t/2

)

(see Part 1 Equation (29)). From this, we get

UA(0,−tG) =

(
eiπ/2 0

0 e−iπ/2

)
= i

(
1 0
0 −1

)
= iZ.

This is the behavior we need, apart from the irrelevant phase factor i. Together with the above-mentioned irradiation of
rotor B, this provides exactly the desired behavior described by the matrix Z⊗G. In the time interval from tn to tn + tG, we
proceed in the same way. Thus, according to Equation (9), in the time interval from t =−tG to t = tn + tG, we have a pulse
sequence that, at least in the 0-phonon subspace, realizes the behavior of a CNOT gate.

Finally, it needs to be clarified in what state the 1-phonon subspace leaves the gate. In the period from t =−tG to

t = 0, Lasers L2A and L2B remain switched off. No phonons are excited, and therefore the expansion coefficients ψ5 to

ψ8 remain at their initial value of 0 (cf. Equation (39)) (the same applies to the state |0〉 |0〉 |2〉 and ψ9). Consequently,

ψ(0) =
(
ψ

′
1(0),ψ

′
2(0),ψ

′
3(0),ψ

′
4(0),0,0,0,0,0

)T
, (40)

where the coefficients ψ ′
i (0) result from the previously discussed effect of the laser radiation from L1A and L1B. In the

time interval from t = 0 to t = tn, 1-phonon states (and also |0〉 |0〉 |2〉) are excited intermittently. But what happens over
the entire period is described by the matrix in Equation (38). From ψ(tn) =U(tn,0)ψ(0), it follows that

ψ(tn) =
(
ψ

′′
1 (tn),ψ

′′
2 (tn),ψ

′′
3 (tn),ψ

′′
4 (tn),0,0,0,0,0

)T
, (41)

because a diagonal matrix leaves the zeros in columns 5 to 9 unchanged. In the last time interval from tn to tn + tG, L2A
and L2B remain switched off again, and accordingly, no phonons are excited. This completes the proof that the described

CNOT protocol leads to the correct result.

7. Supplementary Explanations

In principle, this brings us to the end of the planned endeavor to provide a complete quantum physical description of a

set of universal quantum gates for ion trap quantum computers. However, the presentation in the preceding sections turned

out to be very formal, and therefore, we will now attempt to make the involved processes somewhat more tangible.

For the following considerations, we need the matrices in the Formulas (36) and (37). The most striking difference

between the two matrices is that UW
B has only four non-zero matrix elements, whereas the matrix UW

A has eight. To uncover

the reason for this, we take a look at the energy eigenvalues of the free system, which are to be found on the diagonal of
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the matrix H0. In order to cause transitions between two states of energy Ei and E j the radiation of the laser has to be set to

the angular frequency ωi j = (Ei −E j)/h̄. The energy differences Ei −E j are summarized in the matrix

∆ =−h̄



0 ω1 ω1 2ω1 Ω0 ω1+Ω0 ω1+Ω0 2ω1+Ω0 ω2+ω1

0 0 ω1 Ω0 −ω1 Ω0 Ω0 ω1+Ω0 ω2

0 ω1 Ω0 −ω1 Ω0 Ω0 ω1+Ω0 ω2

0 Ω0 −2ω1 Ω0 −ω1 Ω0 −ω1 Ω0 ω2 −ω1

0 ω1 ω1 2ω1 ω2+ω1 −Ω0

0 0 ω1 ω2 −Ω0

0 ω1 ω2 −Ω0

0 ω2 −ω1 −Ω0

0


(the minus sign is introduced to obtain non-negative values, because ω1 > Ω0 applies, cf. [2] Section 7.6.2).

In the calculation of the matrix UW
A , the angular frequency of the radiation from laser L2A is set to ω = ω1 −Ω0.

This value is found for the matrix elements ∆25 (corresponds to the transitions |0〉 |0〉 |1〉 ↔ |1〉 |0〉 |0〉), ∆35 (corresponds to

|0〉 |1〉 |0〉↔ |1〉 |0〉 |0〉), ∆46 (corresponds to |0〉 |1〉 |1〉↔ |1〉 |0〉 |1〉) and ∆47 (corresponds to |0〉 |1〉 |1〉↔ |1〉 |1〉 |0〉). Since
the laser is directed at rotor A, it cannot trigger the transitions |0〉 |b′〉 |1〉 ↔ |1〉 |b′〉 |0〉, leaving |0〉 |1〉 |b′′〉 ↔ |1〉 |0〉 |b′′〉,
corresponding to the eight matrix elements in UW

A .

In the calculation of the matrix UW
B , the angular frequency of the radiation from laser L2B is set to ω = ω2 +ω1 −Ω0.

This value is found only once in the matrix ∆, and accordingly, there are only four non-zero matrix elements in UW
B .

Next, we will try to improve our understanding of what happens when we subject the 9 basis states |0〉 |0〉 |0〉 to
|0〉 |0〉 |2〉 sequentially to the manipulations described in Section 6. For simplicity, we choose δA = δB = 0 here. The basis

states are represented in the known way by real column vectors. Their numbering follows Table 1.

First we recall that a circular motion of a particle in the x− y-plane can be described by the rotation matrix

R(ωt) =

(
cosωt −sinωt
sinωt cosωt

)

with angular velocity ω . The application of this matrix to the initial position vector~r(t0) yields the position vector~r(t) at
time t. If we compare this with the matrix UW

A (t) considering δA = 0, we find a great similarity: Due to cos(−x) = cos(x)
and sin(−x) =−sin(x) it is easy to verify that the submatrix for the row/column indices 3 and 5 describes a circular motion

in the ψ3 −ψ5-plane with angular velocity − 1
2 Ω1. This is illustrated in Figure 3. The same applies analogously for indices

4 and 6 and to the submatix for the row/column indices 5 and 9 of matrix UW
B (t) (for δB = 0).

Figure 3. Rotation of the state vector in the subspace spanned by the basis states |0〉 |1〉 |0〉 and |1〉 |0〉 |0〉. The negative angular frequency is associated
with a clockwise rotation.
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The column vector with index 1, which represents the state |0〉 |0〉 |0〉 is perpendicular to the ψ3 −ψ5-plane as well as

to the ψ4 −ψ6-plane and to the ψ5 −ψ9-plane. Therefore, rotations within any of these planes map the vector to itself.

The same is true for the column vectors describing the basis states |0〉 |0〉 |1〉 (index 2), |1〉 |1〉 |0〉 (index 7) and |1〉 |1〉 |1〉
(index 8).

For the basis state |0〉 |1〉 |0〉 (index 3) the matter is more interesting: The first π-pulse directed to rotor A rotates the

state clockwise to state −|1〉 |0〉 |0〉. The 2π-pulse administered to rotor B then rotates the state clockwise to + |1〉 |0〉 |0〉
(Figure 4, left). Finally, the second π-pulse towards rotor A rotates the state back to |0〉 |1〉 |0〉.

Figure 4. Red: initial basis state vector, blue: π-pulse of laser L2A, green: 2π-pulse of laser L2B.

Before we consider |0〉 |1〉 |1〉 (index 4) we investigate what happens to the basis state |1〉 |0〉 |0〉 (index 5). The first
π-pulse rotates |1〉 |0〉 |0〉 to |0〉 |1〉 |0〉. Now since the corresponding column vector is perpendicular to the ψ5 −ψ9-plane,

the 2π-pulse does not induce a rotation of the state vector. This is indicated by a green circle in the right part of Figure 4.

The second π-pulse rotates the state vector to −|1〉 |0〉 |0〉.
The basis state vectors corresponding to |0〉 |1〉 |1〉 (index 4) and |1〉 |0〉 |1〉 (index 6) are perpendicular to the ψ5 −

ψ9-plane and, therefore, the 2π-pulse to rotor B has no effect on these two vectors. It is easy to see that the two π-pulses

onto rotor A result in |0〉 |1〉 |1〉 → −|0〉 |1〉 |1〉 and |1〉 |0〉 |1〉 → −|1〉 |0〉 |1〉.
This leaves us with the state |0〉 |0〉 |2〉 (index 9). The corresponding vector is perpendicular to the ψ3 −ψ5-plane as

well as to the ψ4 −ψ6-plane and therefore the first π-pulse does not alter the vector. The 2π-pulse hitting rotor B rotates

the vector to the state −|0〉 |0〉 |2〉. The vector representing this state is obviously also perpendicular to the ψ3 −ψ5- and

the ψ4 −ψ6-planes, so that the second π-pulse has no effect on this vector.

The effects of the protocol on the basis states which are rotated in a nontrivial way are summarized in Table 2.

Table 2. The transitions including the intermediate states when applying the CNOT protocol. The first column contains the index of the input state
according to Tabelle 1.

Index 0− t1 t1 − t2 t2 − t3
3 |0〉 |1〉 |0〉 → −|1〉 |0〉 |0〉 → |1〉 |0〉 |0〉 → |0〉 |1〉 |0〉
4 |0〉 |1〉 |1〉 → −|1〉 |0〉 |1〉 → −|1〉 |0〉 |1〉 → −|0〉 |1〉 |1〉
5 |1〉 |0〉 |0〉 → |0〉 |1〉 |0〉 → |0〉 |1〉 |0〉 → −|1〉 |0〉 |0〉
6 |1〉 |0〉 |1〉 → |0〉 |1〉 |1〉 → |0〉 |1〉 |1〉 → −|1〉 |0〉 |1〉
9 |0〉 |0〉 |2〉 → |0〉 |0〉 |2〉 → −|0〉 |0〉 |2〉 → −|0〉 |0〉 |2〉
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8. Final Remark

“When the Going Gets Tough, the Tough Get Going” (Billy Ocean 1985). Indeed, when you succeeded to follow all

the steps in this article, you can consider yourself as sort of ‘tough’. The reward for the hard work is that we now have a

complete quantum-physical description of a universal set of quantum gates for an ion-trap quantum computer. While it is

based on the physically unrepresentable rotor model for qubits, this simplification does not detract from understanding.

Calcium ions were used as qubits when the Cirac-Zoller mechanism was experimentally proven to work [19].

As mentioned in the introduction, quantum technologies (in combination with artificial intelligence) are undoubtedly

poised to revolutionize many aspects of the business world. Therefore, it is essential that schools—particularly colleges of

engineering and computer science—adapt their syllabi to include basic quantum physics. Moreover, the topic of quantum

computers must also be covered in these classes.
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