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Abstract: Ions offer a promising approach to physically realize qubits. The present text extensively 

elucidates the physics of 1-qubit gates for use in quantum computers based on ion qubits. To keep 

the discussion as simple as possible, ions are treated mechanically as rigid rotors. The discussed 

system is excellently suited to practice important elementary methods of quantum physics using a 

practical application example. For didactic reasons, contrary to the usual approach, a typographical 

distinction is made between states and operators on the one hand and column vectors and matrices 

on the other. The article is aimed at readers with basic knowledge of quantum physics, i.e., those 

familiar with terms like Schrödinger equation, wave function, bra and ket, Pauli matrices, and the 

like. Rudimentary knowledge of quantum computers is also assumed (qubit, gate, ...). 
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1. Introduction 

For several decades, quantum physics has been undergoing a phase commonly referred to as 

the second quantum revolution [1,2]. Advances in measurement techniques allow quantum 

phenomena, initially only indirectly detectable, to now be observed directly. Moreover, ideas are 

being formulated and implemented to make bizarre phenomena like superposition and entanglement 

usable for technical purposes. One of these technical applications is the quantum computer [3–6]. 

Despite intensive efforts in laboratories of many companies and universities, quantum computers are 

still in an early stage of development. A recent report estimates that quantum computing alone will 

lead to about $1 trillion in value creation within the next 10 years and the formation of 840,000 new 

jobs in the same period of time [7]. The second quantum revolution is far from over but is in full 

swing. 

The quantum computers existing today are still very rudimentary. Research groups worldwide 

are searching for the best solutions to various problems that currently hinder progress towards 

practical quantum computers. One of the remaining questions is which physical system is best suited 

for realizing qubits. 

During the last years IBM as well as Alphabet have made impressing progress by using 

superconducting transmon qubits. IBM’s most recent quantum processor comprises more than 1,000 

qubits. Google’s quantum processor contains only 105 qubits, but features superior error correction 

capabilities. The probably most prominent example of a prototypical quantum computer application 

is prime factorization using Shor’s algorithm [8]. The fact that the factorization of a 2048 -bit number 

requires several million qubits illustrates the gap between the present state of the technology and 

devices for real-world applications. Still, the industry is optimistic to close this gap within a few years. 

There are several other well established possibilities for the physical realization of qubits 

(photons, quantum dots, spin of atoms, ...) and new approaches like transition metal complexes [6,9]. 

For example vanadyl derivatives feature long coherence times, hyperfine coupling in a suitable 
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wavelengths range and other favorable properties [10]. It will take a few years to decide whether this 

class of qubits offer an advantage over established approaches when applied to real world problems. 

A further promising qubit candidate is an ion trapped in an ion trap [11]. Companies pursuing 

this approach are IonQ and Quantinuum (Merger of Cambridge Quantum and Honeywell Quantum 

Solutions). This article extensively presents the quantum physics of the ion trap quantum computer 

using a highly simplified ion model [12–14]. The quantum effect employed in the first part, focusing 

on 1-qubit gates, is the superposition |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ of the two logical basis states |0⟩ and |1⟩. In 

the second part (2-qubit gates using the CNOT gate as an example), the entanglement effect is added. 

The presentation here is inspired by B. Zygelman [5]. 

The scenario described in this first part of the article is as follows: An ion is trapped in an ion 

trap and is initially brought into its energetic ground state by cooling. The logical qubit state |0⟩ is 

assigned to the ground state. A quantum gate has the task of transforming this state into a specific 

well-defined superposition state with an energetically excited state. In the ion trap quantum 

computer, this is achieved by exposing the ion to laser radiation. To generate the specified 

superposition state, the radiation must have very precisely defined properties in terms of 

propagation direction, wavelength (or frequency), and polarization. The duration of the irradiation 

is also essential. The following sections will focus on calculating how to choose the parameters of the 

laser radiation to generate a given superposition state of the ion. 

The calculations are sometimes a bit tedious. Readers who want to follow them in detail may 

find the use of a computer algebra system (Mathematica© , Maple© , Maxima, ...) helpful. 

2. The Rotor Model 

So the qubits shall be realized using ions. In order to keep the quantum physical treatment of 

the system as simple as possible, an ion consisting of a positively charged nucleus and a single, 

negatively charged electron is to be used as the qubit. In the context of the classical, non-quantum 

physical description, it is also assumed that the electron orbits the nucleus of the ion at a fixed 

distance R (‘model of the rigid rotor’). 

In the case considered here, it is a mechanical system consisting of two point masses that are 

firmly connected by a rigid and massless axis (Figure 1). Since the mass of the nucleus M is several 

thousand times the mass of the electron 𝑚, the center of gravity of the system almost coincides with 

the center of gravity of the nucleus. The center of gravity of the system is assumed to be at rest. The 

motion of the electron is restricted to the 𝑥 − 𝑦 plane of the coordinate system used. Under these 

conditions, the only possible movement is a rotational movement of the electron around the 

coordinate origin. The angular velocity 𝜔 is linked to the modulus of the velocity 𝑣: = |�⃗�| by 𝑣 =

𝑅𝜔.  A negative/positive value of 𝜔  indicates, whether the electron rotates clockwise/ 

counterclockwise. 

 

Figure 1. Schematic representation of a rotor. The electron moves at a fixed distance 𝑅: = |𝑟| = const 

around the coordinate origin. 

According to the laws of classical physics, any value is allowed for the angular velocity (−∞ ≤ 

𝜔 ≤ ∞) (We consider the non-relativistic case). The energy of the rotor can be expressed in the form 
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𝐸 = 𝐸rot =
1

2
𝐽𝜔2 .  

Here 𝐽 denotes the moment of inertia, which in this case is given by 𝐽 = 𝑚𝑅2. Obviously, the energy 

can assume any non-negative value (0 ≤ 𝐸rot ≤ ∞). Since the motion of the electron is restricted to the  

𝑥 − 𝑦 plane, the angular momentum �⃗⃗� points in the 𝑧 direction. The corresponding component of 

the angular momentum is 

𝐿𝑧 = 𝐽𝜔. 

For the transition to quantum physics, the Hamiltonian function, i.e. the energy, expressed as a 

function of the canonical variables, is required (see [15] Lectures 6 and 8). In the present case, the 

energy depends on the canonical momentum 𝐿𝑧, but not on the canonical coordinate (which would 

be the angle 𝜃): 

𝐸rot =
1

2
(𝐽𝜔)𝜔 =

𝐿𝑧
2

2𝐽
 

and consequently 

𝐻(𝐿𝑧) =
𝐿𝑧

2

2𝑚𝑅2
. 

The corresponding Hamiltonian operator therefore has the form (We will use bold characters 

throughout for quantum physical operators) 

𝑯(𝑳𝑧) =
1

2𝑚𝑅2
𝑳𝑧

2 . (1) 

An operator 𝑨 maps a quantum mechanical state |𝜓⟩ according to 

|𝜙⟩ = 𝑨|𝜓⟩ (2) 

to a state |𝜙⟩. The corresponding position representation of this equation is obtained by forming the 

scalar product 

⟨𝑥|𝜙⟩ = ⟨𝑥|𝑨|𝜓⟩ 

(|𝑥⟩ is an eigenstate of the position operator 𝒙). If 𝑨 is the momentum operator 𝒑𝑥 corresponding 

to the position operator 𝒙, it can be shown that the wave function 𝜙(𝑥) = ⟨𝑥|𝜙⟩ of the state |𝜙⟩ can 

be calculated from the 𝑥-derivative of the wave function 𝜓(𝑥) = ⟨𝑥|𝜓⟩ of the state |𝜓⟩ (cf. [16] 

Section 1.7): 

⟨𝑥|𝒑𝑥|𝜓⟩ = −𝑖ℏ
𝜕

𝜕𝑥
⟨𝑥|𝜓⟩ 

(ℏ reduced Planck constant, 𝑖 imaginary unit). 

For rotational motion, and hence also for the case of the rotor discussed above, an analogous 

relationship applies. It reads (cf. [16] Section 3.6) 

⟨𝜃|𝑳𝑧|𝜓⟩ = −𝑖ℏ
𝜕

𝜕𝜃
⟨𝜃|𝜓⟩ 

( |𝜃⟩ is an eigenstate of the angular operator 𝜽  (see Figure 1)). In position representation, the 

Hamiltonian operator of the rotor can thus be written in the form 

⟨𝜃|𝑯|𝜓⟩ = −
ℏ2

2𝑚𝑅2

𝜕2

𝜕𝜃2
⟨𝜃|𝜓⟩ 

(cf. [16] Section 1.7). 

Now, the quantum physically allowed results of measurements of angular momentum and 

energy are to be determined. Therefore, the eigenvalues of the corresponding operator have to be 

calculated. For the 𝑧 -component of angular momentum, the eigenvalue equation in position 

representation reads 
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−𝑖ℏ
𝜕

𝜕𝜃
𝜓(𝜃) = 𝐿𝑧𝜓(𝜃) 

(𝜓(𝜃) = ⟨𝜃|𝜓⟩). The solution to this differential equation is well known to be 

𝜓(𝜃) = 𝑐1exp(𝑖𝐿𝑧𝜃/ℏ), 

where 𝑐1 represents the integration constant. 

The angular position 𝜃 and all angles differing from 𝜃 by an integer multiple of 2𝜋 denote the 

same location in space. Hence, it must hold that (A better justification for the integrality of ℓ can be 

found in [16] Section 3.5) 

𝜓(𝜃) = 𝜓(𝜃 + 2𝜋ℓ)   with  ℓ ∈ {±1,±2, … }. 

From this condition, it follows that the allowed values of the 𝑧-component of angular momentum 

are given by 

𝐿𝑧 = ℓℏ. 

The sign of ℓ is associated with the sense of rotation of the electron according to the convention 

introduced above. Thus, the eigenfunctions of the 𝑧-component of angular momentum have the 

simple form: 

𝜓ℓ(𝜃) = 𝑐1exp(𝑖ℓ𝜃)   with  ℓ ∈ {±1,±2, … }.  (3) 

To calculate the allowed energy values of the rotor, one needs to solve the time-independent 

Schrödinger equation 

𝑯|𝜓⟩ = 𝐸|𝜓⟩. 

For the present problem, this equation in position representation takes the form 

−
ℏ2

2𝑚𝑅2

𝜕2

𝜕𝜃2 𝜓(𝜃) = 𝐸𝜓(𝜃). (4) 

Since the Hamiltonian operator from Equation (1) commutes with 𝑳𝑧 , the eigenfunctions from 

Equation (3) are also eigenfunctions of Equation (4). It is important to note that states differing only 

by the sense of rotation have the same energy. The energy eigenfunctions are superpositions of these 

two angular momentum states: 

𝜓𝐸ℓ
(𝜃) = 𝑐2 exp(+𝑖ℓ𝜃) + 𝑐3 exp(−𝑖ℓ𝜃). (5) 

𝑐2 and 𝑐3 are integration constants again. Substituting the solution into the differential equation 

yields the allowed energy values: 

𝐸ℓ =
(ℏℓ)2

2𝑚𝑅2
. 

For the energy difference 𝛥𝐸ℓ:= 𝐸ℓ+1 − 𝐸ℓ between neighboring energy eigenvalues, one obtains 

𝛥𝐸ℓ =
ℏ2

2𝑚𝑅2
(2ℓ + 1). (6) 

Thus, the spacing between neighboring energy eigenvalues increases linearly with the quantum 

number ℓ. 

The solution (5) of the differential equation (4) can be expressed in the usual manner in real form 

([17] Section 2.4): 

𝜓𝐸ℓ
(𝜃) = 𝑐4 sin(ℓ𝜃) + 𝑐5 cos(ℓ𝜃). 

In the following, the special case 𝑐5 = 0 and ℓ ∈ {+1, +2, … } (counterclockwise rotation) will 

be considered. From the normalization condition (𝜓𝐸ℓ

∗  is the complex conjugate of 𝜓𝐸ℓ
) 

∫ 𝜓𝐸ℓ

∗ 𝜓𝐸ℓ
𝑑𝜃 = 1

2𝜋

0

 

the integration constant 𝑐4 is determined. Therefore: 
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𝜓𝐸ℓ
(𝜃) =

1

√𝜋
sin(ℓ𝜃). (7) 

The functions 𝜓𝐸ℓ
(𝜃) represent the position representations of the energy eigenstates |𝐸ℓ⟩. These 

states are orthonormal: 

⟨𝐸ℓ|𝐸ℓ′⟩ = 𝛿ℓℓ′  

(𝛿ℓℓ′ Kronecker delta). The probability densities 𝜓𝐸ℓ

∗ 𝜓𝐸ℓ
 of the electron as a function of the angle 𝜃 

are shown for ℓ = 1 and ℓ = 2 in Figure 2. 

 

Figure 2. Probability density of the electron for ℓ = 1 (blue) and ℓ = 2 (orange). The probability 

corresponds to the length of the line from the origin to the respective curve at the corresponding angle.  

For time-independent Hamiltonian operators, any time-dependent state can be formed from the 

stationary solutions (7) of the time-independent Schrödinger equation (4) by superposition: 

|𝜓(𝑡)⟩ = ∑ 𝐶ℓ|𝐸ℓ⟩exp (−𝑖𝐸ℓ𝑡/ℏ)

∞

ℓ=1

. (8) 

The coefficients 𝐶ℓ are determined by the initial conditions ([16] Section 2.1). 

3. Excitation by Laser Radiation 

For the following, it is assumed that an electromagnetic wave propagates along the 𝑧-axis of the 

coordinate system. The radiation field is generated by a laser and falls perpendicularly to the plane 

of rotation of the electron onto the rotor ion. Its electric component in the 𝑥 − 𝑦 plane, where the 

ion is located, is described by 

�⃗⃗�(𝑡) = 𝐸(cos (𝜔𝑡 + 𝛿)�⃗�𝑥 + sin (𝜔𝑡)�⃗�𝑦). (9) 

It thus depends on time, but not on position (i.e., on 𝑥 or 𝑦). Among other things, this means that 

the diameter of the laser beam is assumed to be much larger than the diameter of the electron’s orbit. 

The magnetic field component is neglected. 

In Figure 3, the temporal behavior of the electric field for various values of 𝛿 is illustrated. The 

path of the tip of the vector �⃗⃗�(𝑡) which is attached to any point in the 𝑥 − 𝑦 plane, is shown. For 

example, in the case of 𝛿 = 0, it is easy to see that it is possible to align the directions of �⃗⃗�(𝑡) with 

the direction of the velocity vector of the electron  𝑣(𝑡) throughout the entire orbit. This requires that 

𝜔 and the angular velocity of the electron, as well as the temporal phase relationship between the 



Sci. Insights 2025, 1, 6  6 of 17 

 

two vectors, match. In this case, the electron will experience a constant acceleration under the 

influence of the field, and its energy will steadily increase (More precisely, due to the negative charge 

of the electron, the directions of the two vectors must be opposite). The angular frequency must 

constantly be adjusted to match the electron’s angular frequency. For 𝛿  = 𝜋/2, acceleration still 

occurs in a periodic rhythm under the appropriate conditions. The acceleration is maximum for the 

angular positions 𝜋/4 and 3𝜋/4. 

   

Figure 3. The path of the tip of the field strength vector over one period T = 2𝜋/𝜔 for 𝛿 = 0, 𝛿 = 𝜋/4, 

𝛿 = 𝜋/2 (from left to right). 

The considerations of the previous section were purely classical in nature. The following will 

focus on what statements quantum physics makes regarding the excitation of rotor ions by laser 

radiation. 

We assume that the rotor ion is in the ground state |𝐸1⟩. This can be achieved, for example, by 

cooling. Its energy is 

𝐸1 =
ℏ2

2𝑚𝑅2 . 

Excitation of the ion is only possible if the frequency of the radiation satisfies the resonance 

condition 𝜔 = (𝐸ℓ′ − 𝐸ℓ)/ℏ. For energetically neighboring levels, this can be expressed in the form 

𝜔 = 𝜔ℓ: =
𝛥𝐸ℓ

ℏ
. (10) 

To induce a transition from the ground state to the first excited state |𝐸2⟩, the frequency of the 

laser radiation must therefore be set to 

𝜔1 =
3ℏ

2𝑚𝑅2
. (11) 

Since the energy differences depend on ℓ due to Equation (6), the radiation will not raise the excited 

ion to the next higher energy state |𝐸3⟩. Instead, the ion will return to the ground state through 

stimulated emission and spontaneous emission (see [18] Chapter 4). This is followed by reabsorption 

of radiation; the system constantly oscillates between the states |𝐸1⟩ and |𝐸2⟩ (Rabi oscillations). 

As long as the frequency of the laser radiation is kept at the value 𝜔1, only the two lowest energy 

states are involved in all processes. In this case a general time-dependent state is described instead of 

Equation (8) by 

|𝜓(𝑡)⟩ = 𝐶1|𝐸1⟩exp (−𝑖𝐸1𝑡/ℏ) + 𝐶2|𝐸2⟩exp (−𝑖𝐸2𝑡/ℏ). (12) 

This finally allows the connection to the topic of quantum computers: The two energy states |𝐸1⟩ 

and |𝐸2⟩ are used as logical qubit states |0⟩ and |1⟩. Therefore, in the following, we write |𝑏⟩ or 

|𝑏′⟩ with 𝑏, 𝑏′ ∈ {0,1} instead of the kets |𝐸ℓ⟩ with ℓ ∈ {1,2}. 

4. Matrix Representation 

In quantum physics, two-state systems are most conveniently described in matrix representation. 

This arises from the following considerations: A general state of a two-state system has the form 
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|𝜓⟩ = 𝜓0|0⟩ + 𝜓1|1⟩. (13) 

If the complex expansion coefficients 𝜓0 and 𝜓1 are combined in a column vector 

𝜓 = (
𝜓0

𝜓1
) 

then the column vectors 

(
1

0
)     and    (

0

1
) 

clearly represent the qubit states |0⟩ and |1⟩. 

A linear mapping of the type represented by Formula (2) corresponds to a linear system of 

equations  

𝜙 = 𝐴𝜓  or   𝜙𝑏′ = ∑ 𝐴𝑏′𝑏𝜓𝑏

1

𝑏=0

 (14) 

with a 2 × 2 matrix 

𝐴 = (
𝐴00 𝐴01

𝐴10 𝐴11
). 

The state |𝜙⟩ is associated with the column vector 

𝜙 = (
𝜙0

𝜙1

). 

The system of equations (14) represents formula (2) in the basis defined by |0⟩ and |1⟩. 

Using the completeness relation for the reduced state space 

𝟏 = ∑ |

1

𝑏=0

𝑏⟩⟨𝑏|, 

we have 

|𝜓⟩ = ∑ |

1

𝑏=0

𝑏⟩⟨𝑏|𝜓⟩. 

Comparing with formula (13), we obtain the expansion coefficients of the state vector |𝜓⟩ in the 

chosen basis: 

𝜓0 = ⟨0|𝜓⟩ and 𝜓1 = ⟨1|𝜓⟩ 

(similarly for |𝜙⟩). The matrix elements 𝐴𝑏′𝑏 of the operator 𝑨 are determined accordingly: 

⟨𝑏′|𝜙⟩ = ⟨𝑏′|𝑨|𝜓⟩ = ∑⟨𝑏′|𝑨|𝑏⟩⟨𝑏|𝜓⟩

1

𝑏=0

. 

Comparing with Formula (14), we get 

𝐴𝑏′𝑏 = ⟨𝑏′|𝑨|𝑏⟩. 

Important examples of matrices in quantum physics in general and in what follows are the three 

Pauli matrices 

𝜎𝑥 = (
0 1
1 0

),   𝜎𝑦 = (
0 −𝑖
𝑖 0

)   and   𝜎𝑧 = (
1 0
0 −1

) 

alongside the identity matrix 

1 = (
1 0
0 1

). 
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5. Bloch Sphere and Rotation Matrices 

We expressed a general state above in the form |𝜓⟩ = 𝜓0|0⟩ + 𝜓1|1⟩. The complex coefficients  

𝜓0 = 𝑢0 + 𝑖𝑣0 and 𝜓1 = 𝑢1 + 𝑖𝑣1 correspond to four degrees of freedom. The real numbers 𝑢0 ,𝑢1 ,𝑣0 

and 𝑣1 span a 4-dimensional space.  

From the two coefficients 𝜓0 and 𝜓1, we obtain the probabilities 𝑃𝑏 = |𝜓𝑏|2 for the occurrence 

of the associated basis states |𝑏⟩ when a measurement is performed on the qubit. This assumes that 

the state |𝜓⟩ is normalized: |𝜓0|2 + |𝜓1|2 = 𝑢0
2 + 𝑣0

2 + 𝑢1
2 + 𝑣1

2 = 1. Thus, out of the four degrees of 

freedom, only three are independent. All states that differ only by a phase factor e𝑖𝜑 are physically 

equivalent, since the associated probabilities 𝑃𝑏 are identical. Therefore, the number of degrees of 

freedom can be further reduced by fixing 𝜑 to any value.  

Without going into detail, we note that a general state can be written in the form 

|𝜓⟩ = cos (𝛽/2)|0⟩ + e𝑖𝛼sin (𝛽/2)|1⟩ 

(0 ≤ 𝛼 < 2𝜋, 0 ≤ 𝛽 < 𝜋) (Further details can be found in [5] Section 2.1.2). The two real quantities 𝛼 

and 𝛽 can be interpreted as spherical coordinates in a 3-dimensional, abstract state space. The state 

|𝜓⟩ is uniquely associated with the point �⃗⃗� = (cos 𝛼 sin 𝛽 , sin 𝛼 sin𝛽 , cos 𝛽)𝑇 on the surface of the 

unit sphere in this space, as shown in Figure 4 (The superscript T denotes the transposed vector). This 

sphere is known as the Bloch sphere; the unit vector �⃗⃗� is called the Bloch vector. 

 

Figure 4. The Bloch sphere. The North Pole corresponds to the state |0⟩, the South Pole to the state 

|1⟩. Any point on the surface of the sphere corresponds to a superposition state |𝜓⟩ = cos (𝛽/2)|0⟩ +

e𝑖𝛼 sin (𝛽/2)|1⟩. Note: The sphere is embedded in the state space, not the physical space! 

A matrix that plays an interesting and important role in this context is (cf. [6] Section 4.2)  

𝑅𝑧(𝛾) = exp (−
𝑖𝛾𝜎𝑧

2
). 

The exponential function of a matrix is defined through its power series expansion, in this case:  

exp (−𝑖𝛾𝜎𝑧/2) = 1 − 𝑖(𝛾/2)𝜎𝑧 −
(𝛾/2)2

2!
𝜎𝑧

2 + 𝑖
(𝛾/2)3

3!
𝜎𝑧

3 + ⋯ 

It is easy to verify that 𝜎𝑧
2 = 1. Therefore, we have  

𝑅𝑧(𝛾) = 1 (1 −
(𝛾/2)2

2!
+ ⋯ ) − 𝑖𝜎𝑧 (𝛾/2 −

(𝛾/2)3

3!
+ ⋯ ) = 1 cos(𝛾/2) − 𝑖𝜎𝑧 sin(𝛾/2) 

and consequently 

𝑅𝑧(𝛾) = (
cos (𝛾/2) − 𝑖sin (𝛾/2) 0

0 cos (𝛾/2) + 𝑖sin (𝛾/2)
) = (

exp (−𝑖𝛾/2) 0
0 exp (+𝑖𝛾/2)

). (15) 
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Suppose the state |𝜓⟩ is represented by a point on the surface of the Bloch sphere, with 

azimuthal angle 𝛼 and polar angle 𝛽. Let the corresponding column vector be 𝜓. Applying the 

matrix 𝑅𝑧(𝛾) to 𝜓 moves the associated point on the circle of latitude to azimuthal angle 𝛼 + 𝛾. The 

polar angle 𝛽 remains unchanged. Thus, 𝑅𝑧(𝛾) induces a rotation about the z-axis of the state space. 

We therefore refer to 𝛾 as the rotation angle. It is evident and easy to confirm using Equation (15) 

that 𝑅𝑧(−𝛾) is the inverse matrix of 𝑅𝑧(𝛾): 

𝑅𝑧
−1(𝛾) = 𝑅𝑧(−𝛾). (16) 

Typically, calculations on a quantum computer start with qubits in the ground state (at the North 

Pole of the Bloch sphere). Applying the rotation matrix 𝑅𝑧(𝛾) to the column vector representing this 

state, leaves the vector unaltered. However, besides the matrix 𝑅𝑧 discussed so far, there are also 

matrices that induce rotation about the 𝑥 or 𝑦-axis: 

𝑅𝑥(𝛾) = exp (−𝑖𝛾𝜎𝑥/2) = (
cos (𝛾/2) −𝑖sin (𝛾/2)

−𝑖sin (𝛾/2) cos (𝛾/2)
) 

and 

𝑅𝑦(𝛾) = exp (−𝑖𝛾𝜎𝑦/2) = (
cos (𝛾/2) −sin (𝛾/2)
sin (𝛾/2) cos (𝛾/2)

). 

Starting from the North Pole of the Bloch sphere, any point on the surface of the sphere can be reached 

by successively applying two of the three rotation matrices 𝑅𝑥, 𝑅𝑦, and 𝑅𝑧. The rotation matrices 

will play an important role in the next section. 

6. Qubit Dynamics 

6.1. The Free Rotor 

Applying the procedure described in Section 4 to the time-dependent Schrödinger equation 

𝑖ℏ
𝜕

𝜕𝑡
|𝜓(𝑡)⟩ = 𝑯|𝜓(𝑡)⟩, 

yields the linear differential equation system 

𝑖ℏ�̇�(𝑡) = 𝐻𝜓(𝑡). (17) 

Equations (17) and (14) are formally identical, with the correspondence 𝜙 ↔ 𝑖ℏ�̇�(𝑡), 𝐴 ↔ 𝐻,  and  

𝜓 ↔ 𝜓(𝑡). The dot above the symbol as usually denotes the time derivative: 

�̇�(𝑡) =
𝜕

𝜕𝑡
(

𝜓0(𝑡)

𝜓1(𝑡)
). 

The solution of the system of differential equations determines the time evolution of the 

probabilities to obtain the bit state 𝑏 upon measurement of the system: 

𝑃𝑏(𝑡) = |⟨𝑏|𝜓(𝑡)⟩|2 . 

In the further course, various Hamiltonians will play a role. For the purpose of distinction, from 

now on, the Hamiltonian operator from Equation (1) is denoted by the symbol 𝑯R. Here, ‘R’ stands 

for ‘Rotor’. Since the two kets |0⟩ and |1⟩ are eigenstates of 𝑯R and orthonormal, the matrix 𝐻 R 

can be explicitly specified: 

𝐻 R = (
𝐸1 0
0 𝐸2

). 

This simple result can also be presented more awkwardly, which will prove advantageous later: 

𝐻R =
1

2
(

𝐸1 + 𝐸2 0
0 𝐸1 + 𝐸2

) +
1

2
(

𝐸1 − 𝐸2 0
0 −(𝐸1 − 𝐸2)

). 

Using the identity matrix 1 and the Pauli matrix 𝜎𝑧, this formula can be compactly written as 
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𝐻 R =
1

2
(𝐸1 + 𝐸2)1+

1

2
(𝐸1 − 𝐸2)𝜎𝑧. 

When this matrix is used to determine the time evolution of the qubit state using Equation (17), 

it turns out that the first term proportional to 1 only contributes a phase factor to the solution 𝜓(𝑡). 

Since such phase factors are meaningless in quantum physics, the first term can be simply omitted 

without relevant consequences. Thus, the matrix representing the Hamiltonian operator (1) can be 

written in the form 

𝐻R = −
1

2
ℏ𝜔1𝜎𝑧. (18) 

Here, the energy difference 𝐸1 − 𝐸2 = −𝛥𝐸1 has been expressed through 𝜔1 using Equations (10).  

6.2. The Driven Rotor 

The Hamiltonian for the interaction of a radiation field with the rotor is given by the dipole 

approximation: 

𝐻W = −𝑒𝑟 ⋅ �⃗⃗� 

(𝑒  elementary charge) (In terms of electrodynamics, the rotor-ion described at the beginning of 

Section 2 is composed of an electric monopole and an electric dipole. The dipole consists of a proton 

in the nucleus and the valence electron. The remaining protons form the monopole. Higher orders in 

the multipole expansion of the energy of the charge distribution in an external electric field are of 

minor importance (see [19] Section 4.2). The acceleration experienced by the comparatively massive 

monopole in the high-frequency laser field is neglected). For a transversely polarized radiation field 

propagating in the direction of the z-axis, this yields 

𝐻W = −𝑒(𝑥𝐸𝑥 + 𝑦𝐸𝑦) = −𝑒𝑅(𝐸𝑥cos 𝜃 + 𝐸𝑦sin 𝜃) 

(see Figure 1). Specifically, for the field from Equation (9) (since 𝐿𝑧 is not included in 𝐻W(𝜃)), this 

becomes 

𝐻W(𝜃) = −𝑒𝑅�̂�(cos(𝜃) cos(𝜔𝑡 + 𝛿) + sin(𝜃) sin(𝜔𝑡)). (19) 

The corresponding Hamiltonian operator is explicitly time-dependent: 

𝑯W(𝜽) = −𝑒𝑅�̂�(cos (𝜽)cos (𝜔𝑡 + 𝛿) + sin (𝜽)sin (𝜔𝑡)), 

which will be important for the calculation of the system’s time evolution later. To form the matrix 

𝐻 = 𝐻 R + 𝐻W corresponding to the total Hamiltonian operator, the matrix representation of 𝑯W(𝜽) 

in the |𝑏⟩ basis must be computed. The four matrix elements ⟨𝑏|𝑯𝑊|𝑏′⟩ can be determined using 

the completeness relation 

𝟏 = ∫ |
2𝜋

0

𝜃⟩⟨𝜃|𝑑𝜃 

and the property (This relationship can be easily proven using the power series expansion of the 

function 𝑓) 

𝑓(𝑨)|𝑎⟩ = 𝑓(𝑎)|𝑎⟩ 

where 𝑓(𝑨) is a function of the operator 𝑨 and |𝑎⟩ is an eigenstate of 𝑨. Thus, 

⟨𝑏|𝑯W(𝜽)|𝑏′⟩ = ∫ ⟨𝑏|𝑯W(𝜽)|𝜃⟩⟨𝜃|𝑏′⟩𝑑𝜃
2𝜋

0

= ∫ 𝐻W(𝜃)⟨𝑏|𝜃⟩⟨𝜃|𝑏′⟩𝑑𝜃
2𝜋

0

= ∫ 𝐻W(𝜃)𝜓𝑏
∗(𝜃)𝜓𝑏′(𝜃)𝑑𝜃

2𝜋

0
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(⟨𝑏|𝜃⟩ = ⟨𝜃|𝑏⟩∗). Using Equations (7) and (19), the integrals can be computed easily. The resulting 

matrix is 

𝐻 W = −
1

2
ℏΩcos (𝜔𝑡 + 𝛿)𝜎𝑥 = −

1

2
ℏΩcos (𝜔𝑡 + 𝛿)(𝜎+ + 𝜎−) (20) 

with Ω: = 𝑒𝐸𝑅/ℏ. Additionally, the matrices 

𝜎− = (
0 1
0 0

)    and   𝜎+ = (
0 0
1 0

) 

have been introduced. The decomposition of the Pauli matrix 𝜎𝑥 into the two terms 𝜎+  and 𝜎− 

may seem arbitrary here but is necessary for the following. 

6.3. Product Ansatz 

Now, the system of differential equations (17) needs to be solved (Since the system’s 

Hamiltonian is time-dependent, the procedure of superposing eigenstates as shown at the end of 

Section 2 doesn’t work ([16] Section 2.1).). An exact solution is not known, but there exists a good 

approximate solution based on a product ansatz of the form (The ansatz corresponds to the Dirac or 

interaction picture of quantum physics ([16] Section 5.5).)  

𝜓(𝑡) = 𝑅𝑧
−1(𝜔1𝑡)𝜓𝑤(𝑡). (21) 

As explained in Section 5, 𝑅𝑧(𝛾), applied to a column vector, causes a rotation of the column 

vector about the 𝑧-axis of the state space. In the present case, the rotation angle 𝛾 is proportional to 

time, and the angular velocity of the rotation is 𝜔1  (When considering the term neglected in 

Equation (18), the angular velocity is correspondingly larger.). According to Equation (16), 𝑅𝑧
−1(𝜔1𝑡) 

causes a rotation with opposite direction of rotation compared to 𝑅𝑧(𝜔1𝑡). 

Using the product ansatz in the differential equation system (17), the time derivative of 𝜓(𝑡) is 

required. With Equation (15) and the product rule, we get 

�̇�(𝑡) = �̇�𝑧
−1(𝜔1𝑡)𝜓𝑤(𝑡) + 𝑅𝑧

−1(𝜔1𝑡)�̇�𝑤(𝑡) = 𝑖
𝜔1

2
𝜎𝑧𝑅𝑧

−1(𝜔1𝑡)𝜓𝑤(𝑡) + 𝑅𝑧
−1(𝜔1𝑡)�̇�𝑤(𝑡). (22) 

Substituting the right-hand sides of Equations (21) and (22) into the equation system (17) with 𝐻 =

𝐻 R + 𝐻 W, we obtain 

−
1

2
ℏ𝜔1𝜎𝑧𝑅𝑧

−1𝜓𝑤 + 𝑖ℏ𝑅𝑧
−1𝜓𝑤 = (𝐻 R𝑅𝑧

−1 + 𝐻W𝑅𝑧
−1)𝜓𝑤 . (23) 

Then, after multiplication by (see Equation (16)) 

𝑅𝑧(𝜔1𝑡) = exp (−𝑖𝜔1𝑡𝜎𝑧/2) 

from the left, we get 

−
1

2
ℏ𝜔1𝑅𝑧𝜎𝑧𝑅𝑧

−1𝜓𝑤 + 𝑖ℏ𝜓𝑤 = (𝑅𝑧𝐻R𝑅𝑧
−1 + 𝑅𝑧𝐻W𝑅𝑧

−1)𝜓𝑤 . (24) 

Since 

𝑅𝑧𝐻R𝑅𝑧
−1 = −

1

2
ℏ𝜔1𝑅𝑧𝜎𝑧𝑅𝑧

−1 

(see Equation (18)), the first two terms on both sides of Equation (24) cancel out. By explicit calculation, 

we get 

𝑅𝑧(𝛼)𝜎±𝑅𝑧
−1(𝛼) = exp (±𝑖2𝛼)𝜎±. (25) 

Using Equations (20) and (25), the differential equation system (24) becomes 

𝑖ℏ�̇�𝑤(𝑡) = −
1

2
ℏΩcos (𝜔𝑡 + 𝛿)[e+𝑖𝜔1𝑡𝜎+ + e−𝑖𝜔1𝑡𝜎−]𝜓𝑤(𝑡). (26) 

Now, we use Euler’s formula to rephrase the cosine function and obtain 
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cos(𝜔𝑡 + 𝛿) =
1

2
[e+𝑖(𝜔𝑡+𝛿) + e−𝑖(𝜔𝑡+𝛿)] =

1

2
[e+𝑖𝛿e+𝑖𝜔𝑡 + e−𝑖𝛿e−𝑖𝜔𝑡]. 

With this, the factor appearing on the right side of Equation (26) can be reformulated as 

2cos (𝜔𝑡 + 𝛿)[e+𝑖𝜔1𝑡𝜎+ + e−𝑖𝜔1𝑡𝜎−]                                                                      

= e+𝑖𝛿e+𝑖(𝜔+𝜔1)𝑡𝜎+ + e+𝑖𝛿e+𝑖(𝜔−𝜔1)𝑡𝜎− + e−𝑖𝛿e−𝑖(𝜔−𝜔1)𝑡𝜎+ + e−𝑖𝛿e−𝑖(𝜔+𝜔1)𝑡𝜎−.
 (27) 

6.4. Rotating Wave Approximation 

Next, let’s examine what happens when the laser frequency approaches the resonant frequency 

of the rotor transition 𝜔 → 𝜔1. It’s clear that in this case, the amplitudes of the resonant terms (terms 

containing 𝜔 − 𝜔1) become large. The non-resonant terms (those containing 𝜔 + 𝜔1) become less 

significant and can be neglected (Rotating Wave Approximation (RWA), see [18] Section 4.2 and [20] 

Section 5.1.2). In this approximation, we now consider the resonant case  𝜔 = 𝜔1. Equation (27) then 

approximately reduces to 

2cos (𝜔1𝑡 + 𝛿)[e+𝑖𝜔1𝑡𝜎+ + e−𝑖𝜔1𝑡𝜎−] ≈ e+𝑖𝛿𝜎− + e−𝑖𝛿𝜎+ . 

With the simplified differential equation system (26) under the RWA,  

𝑖�̇�𝑤(𝑡) = −
1

4
Ω[e+𝑖𝛿𝜎− + e−𝑖𝛿𝜎+]𝜓𝑤(𝑡) 

is easy to solve. The solution can be expressed in the form 

𝜓𝑤(𝑡) = 𝑈𝑤(𝑡)𝜓𝑤(0) (28) 

with 

𝑈𝑤(𝑡): = (
cos (Ω𝑡/4) 𝑖e𝑖𝛿 sin (Ω𝑡/4)

𝑖e−𝑖𝛿sin (Ω𝑡/4) cos (Ω𝑡/4)
). 

Our task is to determine 𝜓(𝑡). This column vector can be obtained with Equation (21) and 

Equation (28) as 

𝜓(𝑡) = 𝑅𝑧
−1(𝜔1𝑡)𝑈𝑤(𝑡)𝜓𝑤(0). 

Clearly 𝜓𝑤(0) = 𝜓(0), and thus, we achieve our goal: 

𝜓(𝑡) = 𝑈(𝑡)𝜓(0) 

with 𝑈(𝑡): = 𝑅𝑧
−1(𝜔1𝑡)𝑈𝑤(𝑡). In matrix form, we have 

𝑈(𝑡) = (
e𝑖𝜔1𝑡/2cos (Ω𝑡/4) 𝑖e𝑖(𝜔1𝑡/2+𝛿)sin (Ω𝑡/4)

𝑖e−𝑖(𝜔1𝑡/2+𝛿)sin (Ω𝑡/4) e−𝑖𝜔1𝑡/2cos (Ω𝑡/4)
). (29) 

As claimed in Section 5, the same matrix can be obtained by successively applying two rotation 

matrices. One of several possibilities for this is 

𝑈(𝑡) = 𝑅𝑧(𝛾3)𝑅𝑦(𝛾2)𝑅𝑧(𝛾1) 

with 

𝛾1 = 𝛿 + 𝜋/2,    𝛾2 = −Ω𝑡/2,   𝛾3 = −(𝜔1𝑡 + 𝛿 + 𝜋/2). (30) 

7. 1-Qubit Gates 

The matrix 𝑈(𝑡) from Equation (29) allows us to calculate the effect of the radiation field from 

Equation (9) on the state of a qubit. The result evidently depends on the chosen parameters. The 

frequency 𝜔 is fixed to 𝜔1 by the properties of the rotor. To achieve a specific effect of the field on 

the qubit (i.e., to realize a gate), 𝐸, 𝛿, and the duration of the irradiation 𝑡 remain as parameters. 

This will now be demonstrated conclusively using two important gates. 
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7.1. Quantum-NOT Gate 

Quantum gates are defined by their effect on the basis states |0⟩ and |1⟩ (see [6] Section 1.3). 

The first example where we want to test our hard-earned result from Equation (29) is the Quantum-

NOT gate. The associated operator 𝑿 is defined by 

𝑿|0⟩ = |1⟩  and  𝑿|1⟩ = |0⟩. 

Therefore, applying 𝑿 on the general state |𝜓⟩ = 𝜓0|0⟩ + 𝜓1|1⟩ results in 

|𝜙⟩ = 𝑿|𝜓⟩ = 𝑿(𝜓0|0⟩ + 𝜓1|1⟩) = 𝜓0𝑿|0⟩ + 𝜓1𝑿|1⟩ 

i.e., 

|𝜙⟩ = 𝜓1|0⟩ + 𝜓0|1⟩ 

(swapping the coefficients). 

The column vectors corresponding to |𝜓⟩ and |𝜙⟩ are 

𝜓 = (
𝜓0

𝜓1
)   and   𝜙 = (

𝜓1

𝜓0
). 

It is easy to see that the relation 𝜙 = 𝑋𝜓 is accomplished by the matrix 

𝑋 = 𝜎𝑥 = (
0 1
1 0

). 

To obtain the corresponding parameters of the laser radiation field, we can compare the matrix 

from Equation (29) with 𝑋. We start in the upper left: 

𝑈00(𝑡) = 𝑒𝑖𝜔1𝑡/2cos (Ω𝑡/4) = 0. 

Since 𝑒𝑖𝜔1𝑡/2 ≠ 0, it follows that cos (Ω𝑡/4) = 0 must hold. The simplest solution to this equation is 

Ω𝑡/4 = 𝜋/2, i.e., 

𝑡 = 𝑡𝑋 =
2𝜋ℏ

𝑒𝐸𝑅
. 

Since 𝑋01 = 𝑋10, it follows that 𝑈01 has to be equal to 𝑈10. After canceling the sine factor, 

𝜋
𝜔1

Ω
+ 𝛿 = − (𝜋

𝜔1

Ω
+ 𝛿). 

This implies 

𝛿 = 𝛿𝑋 = −𝜋
𝜔1

Ω
= −

3𝜋ℏ2

2𝑒𝑚𝐸𝑅3
. 

Substituting the results for t and δ into the matrix from Equation (29), we get 

𝑈(𝑡𝑋) = 𝑖 (
0 1
1 0

) = 𝑖𝑋. 

Thus, if the rotor is irradiated with the laser for the duration 𝑡𝑋 , the effect on the associated 

qubit is, up to a phase factor of 𝑖, that of a Quantum-NOT gate, when the phase shift 𝛿 is set to 𝛿𝑋. 

Since phase factors have no physically detectable effects, we have successfully constructed the 

desired gate. 

For the rotation angles according to Equations (30), we obtain 

𝛾1 = 𝛿𝑋 +
π

2
,   𝛾2 = −π,   𝛾3 = 𝛿𝑋 −

π

2
. 

We consider two examples: 

Example 1. Let the initial state be |𝜓⟩ = |0⟩. The associated Bloch vector is �⃗⃗� = (0,0,1)𝑇. After 

applying the gate, the resulting state is |1⟩ with the Bloch vector �⃗⃗�′ = (0,0, −1)𝑇. The effect of the 

gate corresponds to rotations 

1. around the 𝑧-axis (no effect for this initial state, so �⃗⃗� → �⃗⃗�), 
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2. around the 𝑦-axis (rotation angle 𝛾2 = −𝜋, i.e., �⃗⃗� → �⃗⃗�′), 

3. around the 𝑧-axis (no effect for this intermediate state, i.e., �⃗⃗�′ → �⃗⃗�′). 

Example 2. Now, let the initial state be |𝜓⟩ =
1

√2
(|0⟩ + |1⟩). The associated Bloch vector is �⃗⃗� =

(1,0,0)𝑇 . As mentioned above, the gate swaps the coefficients. Since they are equal, the state does not 

change under the effect of the gate. For simplicity, let’s assume that the radiation field can be 

approximately described by 𝛿𝑋 = 0 (𝜔1 ≪ Ω). 

The following rotations need to be performed: 

1. Around the 𝑧-axis, rotation angle 𝛾2 = 𝜋/2 (the Bloch vector becomes (0,1,0)𝑇), 

2. around the 𝑦-axis (no effect for this intermediate state), 

3. around the 𝑧-axis, rotation angle 𝛾3 = −𝜋/2: The Bloch vector returns to (1,0,0)𝑇 . 

In both examples, it is shown that the rotational angle formalism is consistent with our 

expectations. 

7.2. Hadamard Gate 

The procedure for the widely used Hadamard gate G is analogous (To avoid confusion with a 

Hamiltonian operator, we use the symbol G.). The definition of the gate using the two basis states is 

𝑮|0⟩ =
1

√2
(|0⟩ + |1⟩)   and   𝑮|1⟩ =

1

√2
(|0⟩ − |1⟩). 

For the general state |𝜓⟩, this results in 

|𝜙⟩ = 𝑮|𝜓⟩ = 𝑮(𝜓0|0⟩ + 𝜓1|1⟩) = 𝜓0𝑮|0⟩ + 𝜓1𝑮|1⟩

=
𝜓0

√2
(|0⟩ + |1⟩) +

𝜓1

√2
(|0⟩ − |1⟩)

 

i.e., 

|𝜙⟩ =
𝜓0 + 𝜓1

√2
|0⟩ +

𝜓0 − 𝜓1

√2
|1⟩. 

The column vectors corresponding to |𝜓⟩ and |𝜙⟩ are 

𝜓= (
𝜓0

𝜓1

)    and   𝜙 =
1

√2
(

𝜓0 + 𝜓1

𝜓0 − 𝜓1

) 

and the matrix corresponding to 𝑮 is 

𝐺 =
1

√2
(

1 1
1 −1

). 

This matrix is again to be compared with that from Equation (29). We start with the main 

diagonal. There, 𝑈11 = −𝑈00 must hold, and consequently, 

e𝑖
𝜔1𝑡

2 cos (
Ω𝑡

4
) = −e−𝑖

𝜔1𝑡
2 cos (

Ω𝑡

4
). 

After canceling the cosine factor and using −1 = e𝑖π , we get 𝜔1𝑡/2 = π − 𝜔1𝑡/2. This yields the 

irradiation time 

𝑡 = 𝑡𝐺 =
2𝜋𝑚𝑅2

3ℏ
. 

The reasoning for the counterdiagonal is similar. From 𝐺10 = 𝐺01 we conclude that 𝑈10 needs 

to be equal to 𝑈01. Thus, 

𝑖e𝑖(𝜔1𝑡𝐺/2+𝛿)sin (Ω𝑡𝐺/4) = 𝑖e−𝑖(𝜔1𝑡𝐺/2+𝛿)sin (Ω𝑡𝐺/4). 

After canceling common factors, the phase shift of the Hadamard gate can be specified: 
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𝛿 = 𝛿𝐺 = −
𝜋

2
 

(linearly polarized wave, see Figure 3). 

Another equation is 𝑈00 = 𝑈01. Explicitly, this means 

e𝑖𝜔1𝑡𝐺/2cos (Ω𝑡𝐺/4) = e−𝑖(𝜔1𝑡𝐺/2+𝛿𝐺)𝑠in (Ω𝑡𝐺/4) 

After canceling and using 𝑖 = e𝑖𝜋/2, we have 

cos (
Ω𝑡𝐺

4
) = sin (

Ω𝑡𝐺

4
). 

This equation is satisfied for Ω𝑡𝐺/4 = 𝜋/4. Substituting 𝑡𝐺 yields Ω = 𝜔1 or 

𝐸 = 𝐸𝐺 =
3ℏ2

2𝑒𝑚𝑅3
. 

As a precaution, let us verify the result by substituting 𝑡𝐺 , 𝛿𝐺 , and 𝜔1 for Ω into Equation (29). 

We obtain 

𝑈(𝑡𝐺) =
𝑖

√2
(

1 1
1 −1

) = 𝑖𝐺. 

This is the desired result except for the physically irrelevant phase factor 𝑖. 

Finally, let’s consider the formalism for the Hadamard gate according to Equations (30). For the 

rotation angles, the following values are obtained: 

𝛾1 = 0,   𝛾2 = −
π

2
,   𝛾3 = −π. 

We limit ourselves to one example: 

Example 3. Let the initial state be |𝜓⟩ = |0⟩ with Bloch vector �⃗⃗� = (0,0,1)𝑇. After applying the 

Hadamard gate, it becomes the state 
1

√2
(|0⟩ + |1⟩) with Bloch vector �⃗⃗�′ = (1,0,0)𝑇. The effect of the 

gate corresponds to rotations 

1. around the 𝑧-axis (no effect due to rotation angle 𝛾1 = 0, i.e., �⃗⃗� → �⃗⃗�), 

2. around the 𝑦-axis (rotation angle 𝛾2 = −𝜋/2, i.e., �⃗⃗� → −�⃗⃗�′), 

3. around the 𝑧-axis (rotation angle 𝛾3 = −𝜋, i.e., −�⃗⃗�′ → �⃗⃗�′). 

Again, the result corresponds to our expectations. 

8. Conclusions 

We have achieved an important milestone, namely the determination of a general formula for 

constructing arbitrary 1-qubit gates. To this end we have made a series of approximations: Firstly, 

we have utilized the model of a rigid rotor to describe an atom respectively an ion. Since we are 

interested in qualitative assertions and not in quantitative results this seems to be a valid procedure: 

The similarities of the energy spectrum of atoms and the rotor are certainly sufficient to justify this 

approximation. Secondly, we have treated the radiation field of the laser classically. This is justified 

by the success of the model only. Including a quantized electromagnetic field would complicate 

matters even further. Finally, we have made use of the RWA. The justification of this approximation 

has been given in the corresponding section. All in all it seems that these approximations are 

appropriate to address the matter discussed here. 

In the second part of this article, we will focus on the construction of the CNOT gate. The CNOT 

gate is a 2-qubit gate of outstanding importance. This is because any quantum gate can be constructed 

by combining CNOT and 1-qubit gates (universality). At the end of Part 2 of this article, all the 

elements for building an ion trap quantum computer will be available. 

Recently several research groups have reported results, which promise real progress concerning 

the scalability of ion trap quantum computers [21,22]. So it seems that ion trap-based quantum 
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computers are a good candidate for demonstrating quantum supremacy on practical relevant 

problems. 
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