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Abstract: We investigate the problem of offline reinforcement learning using non-Markovian 

reward functions, which allows for the incorporation of more realistic and intricate reward 

structures in the learning process. Offline reinforcement learning has shown promising potential in 

learning optimal policies when the agent has access to previously collected static datasets. Reward 

machines offer a way to encode the high-level structure of non-Markovian reward functions. We 

introduce C-QRM, an offline reinforcement learning approach that employs non-Markovian reward 

functions specified as reward machines to accomplish complex tasks and learn an optimal policy 

more efficiently by utilizing the offline dataset. Our objective is to learn a conservative Q-function 

that decomposes complex high-level reward machines and whose expected value of a policy under 

this Q-function provides a lower bound to its actual value. C-QRM learns these lower-bounded Q-

values, mitigating overestimation bias and improving sampling efficiency. We evaluate the 

performance of the proposed C-QRM algorithm by comparing it to QRM as a baseline method. The 

results indicate that C-QRM outperforms QRM with fewer training steps and benefits from the 

offline dataset. 
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1. Introduction 

Combining reinforcement learning (RL) with expressive deep neural networks has 

demonstrated great potential in a range of applications, from robotics [1] and strategy games [2] to 

recommendation systems [3]. In RL, an agent maximizes accumulative reward by learning from its 

interactions with the environment through trial and error. However, Real-world applications, such 

as autonomous driving and robotics, often require agents to learn from static datasets due to safety 

or cost constraints. The agent may not have access to a live environment for learning. Collecting 

online data can be costly and time-consuming in practice, so the agent may only have access to a 

previously collected static dataset. This is known as offline reinforcement learning (offline RL), which 

has become increasingly popular due to its practical applications. Offline RL involves learning 

effective policies from a static dataset without further environmental interaction. To learn the optimal 

policy, the agent must be provided with a user-specified reward function. However, this reward 

function is often programmed as a black box to the agent, making it difficult for the agent to access 

the structures or high-level ideas the programmer used in defining it [4]. Existing offline RL methods 

struggle with non-Markovian rewards (e.g., rewards dependent on historical states) and task 

complexity. To address this problem, we propose a solution where the high-level task specification 

is encoded by the reward machine in the offline reinforcement learning setting, enabling the agent to 

learn an optimal policy from the existing dataset while having access to the specification of the 

reward function. This work bridges reward machines—a formalism for encoding structured tasks—

with conservative Q-learning to address these challenges. 
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Rewards machines can encode high-level tasks for RL agents [5] by allowing the agents to be 

awarded different rewards at different time steps, enabling the achievement of sub-goals in a 

temporally extended manner. Optimizing a policy that satisfies these goals, with the maximum 

expected discounted future reward from all MDP states, promotes the creation of more robust and 

interpretable policies better suited for generalization to new environments. Furthermore, reward 

machines are beneficial for capturing high-level objectives and safety requirements that cannot be 

expressed easily with simple scalar rewards. The reward machine facilitates their incorporation into 

standard Q-learning to encode non-Markovian reward functions. Nonetheless, applying standard Q-

learning to real-world problems consistently poses practical challenges. To address this, we use 

offline data to train the Q-functions instead of interacting with the environment during training. 

The distributional shift issue in offline RL arises when the learned policy deviates from the 

behavior policy that generated the dataset, leading to erroneous Q-value estimations for out-of-

distribution actions [6]. To address this problem, we leverage the framework of Conservative Q-

Learning (CQL) [7], which explicitly enforces a lower bound on Q-values through a regularization 

term. Specifically, CQL minimizes the expected Q-value under a learned policy while maximizing it 

under the behavior policy, thereby mitigating overestimation errors caused by distributional shifts. 

This paper presents a novel offline reinforcement learning (RL) method, called C-QRM, that 

combines conservative Q-learning with reward machines to enhance sampling efficiency using 

unbiased or biased offline data. The conservative Q-learning technique ensures that the agent learns 

the optimal policy without deviating from the provided offline dataset. The effectiveness of C-QRM 

is evaluated on various benchmark environments and compared to existing Q-learning for reward 

machines (QRM) [4] methods. The experimental results demonstrate that C-QRM outperforms 

existing methods regarding sample efficiency, stability, and convergence guarantee, offering a 

promising approach for offline RL with complex and non-Markovian reward function specifications. 

To the best of our knowledge, this is the first work to investigate offline RL with non-Markovian 

reward functions using formal methods. 

2. Related Work 

Offline reinforcement learning: Offline RL, also known as batch reinforcement learning, is a 

powerful data-driven learning paradigm that learns the static pre-collected data via interaction with 

the environment [6,8]. In this setting, the offline policy is learned and improved over the behavior 

policy (i.e. the policy used to collect the offline dataset). The popularity of offline reinforcement 

learning has increased dramatically in recent years because of its potential to remove the barrier 

between online reinforcement learning methods and real-world applications, such as robotics [9–11], 

healthcare [12], and dialogue systems [13]. Even though the widespread offline reinforcement 

learning demonstrates such capability, it still suffers the unexpected behavior caused by the error of 

distributional shift. This is one of the core challenges of offline RL [6,8,14–16]. Several existing works 

have focused on solving the issue of distributional shifts. The authors proposed Batch-constrained 

deep Q-Learning (BCQ) in [17] to constrain the learned policy with minimal mismatch to the behavior 

policy concerning the dataset. This method relies on the idea of ”staying close” to the dataset using 

the estimate of behavior policy [18]. However, the learned policy may still differ far from the behavior 

policy if the action moves far from the action in the offline data. A policy regulation approach was 

introduced in [19] to improve the robustness of policy selection. The work mentioned above mainly 

aims to prevent the learned policy from deviating from the behavior policy in the collected data. On 

the other hand, the Lyapunov stability in control theory is integrated with the density model to avoid 

distributional shifts in [20]. These methods are primarily based on estimating the density and the 

distribution of the provided static dataset. Besides solving the distributional issue, integrating the 

Trans-former [21] model with reinforcement learning has attracted more interest in recent years. The 

reinforcement learning problems can be unified under a sequence model [22], taking the entire state-

action trajectory as input. Trajectory transformer is proposed in [22], closely related to Decision 

Transformer [23], but they have different purposes. Trajectory transformer output the sequence of 



Sci. Insights 2025, 1, 5  3 of 12 

 

states, actions, and rewards as a planner in a long-horizon sparse-reward task. The decision 

transformer aims to output the reward-conditioned action only. 

RL with non-Markovian reward functions: Our work is closely related to RL with non-

Markovian reward functions. In real-world scenarios, obtaining or designing immediate rewards for 

a control action is often challenging, such as scoring each move of an autonomous vehicle at every 

instant, which can be time-and resource-intensive [24]. In contrast, evaluating the entire trajectory 

after the agent completes a complex task with a non-Markovian reward function is much easier. 

Several RL approaches exist where non-Markovian reward functions are expressed using reward 

machines or temporal logic specifications [5, 25–33]. For instance, in [5], the authors introduced Q-

learning for reward machine (QRM) and demonstrated its ability to converge to an optimal policy in 

the tabular case with high certainty. QRM also outperforms Q-learning and hierarchical RL for tasks 

where reward machines can represent the reward functions. In [25], the authors conceptualized and 

developed a Joint Inference of Reward machines and Policies (JIRP) algorithm for RL. Specifically, the 

approach infers high-level knowledge in the form of reward machines during RL, and the inferred 

high-level knowledge can effectively guide the future explorations of the learning agent. These works 

have yet to utilize offline datasets to expedite the RL process. 

3. Preliminaries 

Reinforcement Learning (RL): In reinforcement learning, the goal is to learn a policy that 

maximizes the expected cumulative discounted reward of an agent interacting with an unknown 

environment, which is modeled in a Markov decision process (MDP). One of the most popular RL 

algorithms is Q-learning, which involves learning an optimal policy π∗ maximizes the expected 

cumulative dis-counted reward in the MDP. However, in some cases, Q-learning can result in 

excessive exploration and suboptimal decision-making, leading to undesirable outcomes. 

Definition 1. A labeled Markov decision process (MDP) is defined by a tuple (S, A, T, r, γ, P, L), where S is 

a finite state space and A is a finite action space. T (s t+1|s, a) is the dynamic transition probability distribution. 

r is the reward function and γ ∈ (0, 1] is the discounted factor. Lastly, P is a finite set of propositional variables, 

and L : S × A × S → 2P is the labeling function representing the set of relevant high-level events the agent senses 

while interacting with the environment. 

In the MDPs considered in this paper, we adopt a slightly different setting where the reward 

function r is defined throughout history. In contrast, the transition function is still Markovian (i.e., 

MDPs with non-Markovian reward functions). Each transition of an MDP has an associated label 

defined by labeling function L and a set of propositions P, which is known to the agent. The labels 

are expert knowledge of successfully executing a task. The reward can be easily expressed. 

Reward Machine: To specify the reward associated with a task in RL, we use the formalism of the 

reward machine. It is a finite-state machine describing each state’s expected reward and action. The 

reward machine is constructed using a set of reward functions defined for each state-action pair. The 

reward machines enable the agent to learn the optimal policy by maximizing the expected reward 

while satisfying the constraints specified by the reward machines. 

Definition 2. Reward machine 𝐴 = (𝑉, 𝑣1 , 2
𝑃 ,ℝ, 𝛿, 𝜎) consists of a finite, nonempty set V of reward machine 

states, an initial reward machine state v1 ∈ V , an input alphabet 2P where P is a finite set of propositional 

variables, an output alphabet ℝ, a (deterministic) transition function δ : V × 2P → V , and an output function 

σ : V × 2P → ℝ. 

Offline Reinforcement Learning: The offline RL problem can be considered as a data-driven method 

in RL settings where the agent has access to a dataset which consists of pre-collected experiences. The 

agent uses the pre-collected static dataset, 𝔻 = {(𝑠𝑖, 𝑎𝑖, 𝑟𝑖 , 𝑠𝑖
′)}, to learn the optimal policy π(a|s, v) to 

obtain the maximized cumulative reward. For the offline RL, the behavior policy π β is often generated 

by the expert to guide the agent in interacting with the environment. ′Here we use the empirical 

behavior policy 𝜋
^

𝛽(𝑎 ∣ 𝑠, 𝑣):=
∑ 𝟏𝑠′,𝑣′,𝑎′∈𝔻 [𝑠=𝑠′,𝑣=𝑣′,𝑎=𝑎′]

∑
𝑠′,𝑣′∈𝔻 1[𝑠=𝑠′,𝑣=𝑣′]

 to collect the dataset 𝔻. Q-learning is a model-

free reinforcement learning algorithm that involves learning an optimal policy by iteratively 
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updating the Q-values for each state-action pair. Conservative Q-learning (CQL) [7] is a variant of Q-

learning or actor-critic algorithm in the conservative Q-function lower bounds of the true Q-value. 

The Soft Actor-Critic (SAC) algorithm constructs the backbone of the CQL algorithm. The CQL 

algorithm involves a parametric Q-function Qθ(s, v, a) and parametric policy πϕ(a|s, v). 𝑄
^

(𝑠, 𝑣, 𝑎) is 

the learned update that lower bounds the true Q-value. It shows that the 𝑄
^

 lower bounds the Q. The 

Bellman operator is defined as 𝔹𝑄(𝑠, 𝑣, 𝑎) = 𝑟(𝑠, 𝑣, 𝑎)+ 𝛾𝔼 [𝑚𝑎𝑥
𝑎′

𝑄(𝑠′, 𝑣′)]. The parameters of the Q-

function can be trained to minimize the residual error of 𝐽𝑄(𝜃) = 𝔼𝑠∼𝔻,𝑎∼𝔻 [
1

2
(𝑄𝜃(𝑠, 𝑣, 𝑎) −

𝔹𝑄
^

𝜃(𝑠, 𝑣, 𝑎))

1

2

]. The goal is to approximate the value function V (s, v) of the policy πθ given the offline 

dataset 𝔻. We define the policy value under 𝑄
^

as 𝑉
^
. In the policy improvement stage, where 𝜋

^
=

arg⁡ 𝑚𝑎𝑥
𝜋

𝔼𝑠∼𝔻,𝑎∼𝜋(𝑎∣𝑠,𝑣) [𝑄
^

(𝑠, 𝑣, 𝑎)]. 

4. Problem Statement 

In many real-world scenarios, assuming a Markovian reward is unrealistic because historical 

states and actions may significantly influence the current reward. For example, controlling 

autonomous vehicles depends on the vehicle’s historical actions, not just the current state. In 

Healthcare applications, treatment efficacy may rely on cumulative drug doses over time, also 

violating Markovian assumptions. Thus, in this paper, we consider the reward function to be non-

Markovian. We use a reward machine to encode the non-Markovian reward functions while taking 

the previous states and actions into consideration. Moreover, the reward machine allows the agent 

to comprehend the high-level idea behind the user-defined reward structure. Our goal is to enable 

the agent to learn an optimal policy from the offline dataset and decompose the high-level complex 

task specification. Task complexity is evaluated through two dimensions: (1) the hierarchical 

structure of the reward machine, where states and transitions encode temporal dependencies (e.g., 

sequential subtasks in the office world), and (2) the non-Markovian reward function, which requires 

the agent to infer historical state-action pairs to compute rewards (e.g., traffic rule compliance). 

Q-learning methods often fail to learn on static, off-policy data. Since the Q-function is trained 

only on actions according to the dataset that is sampled from the behavior policy, and the target value 

of the Bellman equation uses the action values based on the learned policy, offline reinforcement 

learning algorithms that are based on behavior policy suffer from this distributional shift during the 

training process. Furthermore, the learned policy is trained to maximize the Q-value in the Bellman 

update, which can lead to a bias towards out-of-distribution actions that produce high Q-values. 

Therefore, this Q-value is erroneously high, which may cause the Q-function converges with an error. 

Because the dataset is static and interacting with the environment is not available, correcting this Q-

value and the out-of-distribution actions in offline reinforcement learning is challenging. Therefore, 

in this paper, we use conservative Q-learning to solve this erroneously Q-value updates and out-of-

distribution actions issue. 

Problem 1. Given a static offline dataset 𝔻⁡= {s, a, s′, r}, a labeled MDP = (S, A, T, r, γ, P, L), where the 

non-Markovian reward function r is encoded by the reward machine A = (V, v1, 2P , R, δ, σ). Learn the 

optimal policy of the agent for maximizing the cumulative reward. 

Learning from the static offline data for the Q-learning method is challenging and rarely 

successful due to the out-of-distribution actions. Simply increasing the volume of the dataset is not 

helpful. In the Bellman update, maximizing the learned Q-values using the new action at the new 

state give the target Q-value. However, the target Q-value may contain an error if the Q-function was 

naively maximized since the Q approximation is produced based on the actions that are far outliers 

of the training dataset. Particularly, we denote ηi(s, v, a) = Qi(s, v, a) − Q∗(s, v, a) as the total error at 

each iteration i of Q-learning, and denote ei(s, v, a) = Qi(s, v, a) − 𝔹Qi−1(s, v, a) as the current Bellman 
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error, where 𝔹Q(s, v, a) = r(s, v, a) + γ𝔼[max⁡𝑄(𝑠′, 𝑣′, 𝑎′)]. Then the total error 𝜂𝑖(𝑠, 𝑣, 𝑎) ≤ 𝛿𝑖(𝑠,𝑣, 𝑎) +

𝛾𝑚𝑎𝑥
𝑎′

𝔼𝑠′[𝜂𝑖−1(𝑠
′,𝑣′, 𝑎′)]. It suggests that the current Bellman error is the sum of the discounted error 

from (s′, v′, a′) and the new error δi(s, v, a) from the current iteration in Q-learning. This paper uses 

the strategy to lower bound the Q-values to avoid these out-of-distribution action errors. 

5. Conservative Q-learning for Reward Machines 

This section presents the Conservative Q-learning for Reward Machine (C-QRM) algorithm. We 

begin by collecting the dataset using the QRM algorithm as the empirical behavior policy within the 

designed environment. Next, this dataset is then used to train the CQL network. Finally, to update 

the Q-value, we apply Conservative Q-learning, which involves adding a regularization term to the 

Q-function as a penalty. This regularization term ensures that the expected value of a policy under 

this Q-function is lower-bounded by its true value, thereby avoiding the distribution shift problem. 

Algorithm 1 presents the pseudocode for C-QRM. The Q-function estimator and the policy are 

parametrized in this algorithm with a neural network parameter θ and ϕ as shown in the 

hyperparameter section. The input to the neural network consists of state and action data dimensions 

and high-level re-ward machine states. The reward machine A and the offline dataset 𝔻are given as 

the input. We use empirical behavior policy to generate the offline dataset by observing the QRM in 

the environments In line 1. The parametrized Q-function Qθ is first initialized. There are three for 

loops in the main body of the C-QRM Algorithm. In the first for loop, we iterate over the episode of 

RL. In each episode, the low-level MDP state s and the high-level reward machine state v are 

initialized in lines 3–4. In the second for loop (lines 5 to 10), the training step is iterated from 0 to 

eplength. The action is first sampled from the πϕ(a|s, v) distribution. The next state s′ is then obtained 

by executing the selected action at the old state (line 7). The next high-level reward machine state and 

new reward are obtained based on the previous reward machine state v and the labeling function 

constructed using a tuple (s, a, s′) in line 8. The reward is obtained from the output function on the 

reward machines in line 9. Then, the Q-function is updated using the CQL objective function in line 

10. The 𝑄
^

𝜃
𝑡+1 is the Q-value that lower bounds the true Q-value. In this line, the expectation of the Q-

value is based on the action sampled from a particular distribution of state-action pair µ(a|s, v). The 

additional maximization expectation Q-value under the empirical behavior policy 𝜋
^

𝛽(𝑎 ∣ 𝑠, 𝑣) 

substantially improves the bound so that the action selection is biased toward the dataset. Then the 

last term is the standard Bellman error, where the 𝔹𝜋 is the Bellman operator and the 𝑄
^

𝜃
𝑡  is the 

parametrized target Q-value. The off-policy imp ovement is evaluated in line 11 using gradient 

descent. We then have 𝔼𝜋(𝑎∣𝑠,𝑣) [𝑄
^
𝜋(𝑠,𝑣, 𝑎)] ≤ 𝑉𝜋(𝑠,𝑣) when µ(a|s, v) = π(a|s, v). 

In the third loop, we loop through all other reward machine states that have not been 

experienced, denoted as 𝑣
~

 from V . We obtain the next reward machine state 𝑣
~
′  similarly by 

transition function δ and the reward 𝑟
~
 by output function σ. First, the target value is updated using 

the reward 𝑟
~
. Then the lower bounded is updated in a similar way as line 10. Next, the policy πϕ is 

updated similarly to line 11. Finally, the MDP state s moves to the next state s′, and the previous 

reward machine state v move to the next reward machine v′. 

Under mild conditions, Theorem 1 below provides the theoretical guarantee that the proposed 

method learns Q-value approximations that provide a lower bound to the actual Q-function [7]. 
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Algorithm 1: Conservative Q-learning for reward machine 

Hyperparameter: episode length eplength, tradeoff factor α, learningrate γ,  

parametric Q-function parameter θ, parametric policy parameter ϕ 

Input: A reward machine A = (V, vI , 2P , ℝ, δ, σ), an offline dataset 

𝔻 = {(si, ai, s′i, ri)}, for each trajectory i 

1   Qθ ← initialQFunctions() 

2   for episode = 1, 2, · · · do 

3      s ← InitialState() 

4      v ← InitialRMState() 

5      for 0 ≤ t < eplength do 

6         𝑎⁡⁡ ∼ 𝜋
^

𝜙(𝑎 ∣ 𝑠, 𝑣) 

7         s’ ← ExecuteAction(s,a) 

8         v’ ← δ(v, L(s, a, s′)) 

9         r ← σ(v, L(s, a, s′)) 

10        𝑄
^

𝜃
𝑡+1(𝑠, 𝑣, 𝑎) ← arg⁡ min

𝑄
𝛼 [𝔼𝑠∼𝔻,𝑎∼𝜇(𝑎∣𝑠,𝑣)𝑄𝜃(𝑠,𝑣, 𝑎)− 𝔼

𝑎∼𝔻,𝑎∼𝜋
^
𝛽(𝑎∣𝑠,𝑣)

𝑄𝜃(𝑠, 𝑣, 𝑎)] 

                  +
1

2
𝔼𝑠,𝑎,𝑠′∼𝔻 [(𝑄𝜃(𝑠, 𝑣, 𝑎)− 𝔹𝜋𝑄

^

𝜃
𝑡 (𝑠, 𝑣, 𝑎))2] 

11        𝜙𝑡 ← 𝜙𝑡−1 − 𝛾𝜋𝔼𝑠∼𝔻,𝑎∼𝜋
^

𝑄
^
(⋅∣𝑠,𝑣)

[𝑄
^

𝜃(𝑠, 𝑣, 𝑎) − log⁡𝜋
^

𝜙(𝑎 ∣ 𝑠, 𝑣)] 

12        for 𝑣
~
∈ 𝑉 ∖ {𝑣}⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⁡//⁡excludingv 

13         do 

14           𝑣
~′ ← 𝛿 (𝑣

~
, 𝐿(𝑠, 𝑎, 𝑠′)) 

15           𝑟
~
← 𝜎(𝑣

~
, 𝐿(𝑠, 𝑎, 𝑠′)) 

16           update 𝔹𝑄
^

𝜃
𝑡 (𝑠,𝑣, 𝑎) using reward 𝑟

~
 

17           update 𝑄
^

𝜃
𝑡+1(𝑠, 𝑣

~
, 𝑎) in a similar way as line 10 

18           improve the policy ⁡ 𝜋
^

𝜙 in a similar way as line 11 

19         s ← s′ 

20         v ← v′ 

21      end for 

22    return 𝑄
^

𝜃 

Theorem 1. [7](CQL learns lower-bounded Q-values) Let 𝜋
𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣) ∝ 𝑒𝑥𝑝⁡ (𝑄

^
𝑡(𝑠, 𝑣, 𝑎))where 𝜋

𝑄
^𝑡

 is the 

learned policy with the lower-bounded Q-function 𝑄
^
𝑡 at the t-th iteration, and assume that 𝐷 (𝜋

^ 𝑡+1 ,𝜋
𝑄
^𝑡
) ≤

𝜖, where 𝐷 (𝜋
^
𝑡+1 ,𝜋

𝑄
^𝑡
) is the total variation distance between the two policies 𝜋

^
𝑡+1 and 𝜋

𝑄
^𝑡

. Then the policy 

value under 𝑄
^
𝑡 lower bounds the actual policy value, i.e., 𝑉

^
𝑡+1(𝑠, 𝑣) ≤ 𝑉𝑡+1(𝑠, 𝑣) for every s and v, where 

𝑉
^
𝑡+1(𝑠, 𝑣) is the lower-bounded expected value function, if 

𝔼𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣) [

𝜋
𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣)

𝜋
^

𝛽(𝑎 ∣ 𝑠. 𝑣)
− 1] ≥∑

𝑎

[
𝜋
𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣)

𝜋
^

𝛽(𝑎 ∣ 𝑠. 𝑣)
] ⋅ 𝜖 (1) 

Proof of Theorem 1. Following the proof of Theorem 3.3 in [7], We calculate the change in the policy 

value, 𝑉
^
𝑡+1, that results from using the updated Q-value, 𝑄

^
𝑡+1, with respect to the previous iterate 

𝔹𝜋𝑄
^
𝑡. 
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𝔼
𝜋
^𝑡+1(𝑎∣𝑠,𝑣)

[𝑄
^
𝑡+1(𝑠, 𝑣, 𝑎)] = 𝔼

𝜋
^𝑡+1(𝑎∣𝑠,𝑣)

[𝔹𝜋𝑄
^
𝑡(𝑠, 𝑣, 𝑎)] − 𝔼

𝜋
^𝑡+1(𝑎∣𝑠,𝑣)

[
𝜋
𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣)

𝜋
^

𝛽(𝑎 ∣ 𝑠, 𝑣)
− 1]

= 𝔼
𝜋
^𝑡+1(𝑎∣𝑠,𝑣)

[𝔹𝜋𝑄
^
𝑡(𝑠, 𝑣, 𝑎)] − 𝔼𝜋

𝑄
^
𝑡
(𝑎∣𝑠,𝑣) [

𝜋
𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣)

𝜋
^

𝛽(𝑎 ∣ 𝑠, 𝑣)
− 1]

+∑(𝜋
𝑄
^
𝑡
(𝑎 ∣ 𝑠, 𝑣)− 𝜋

^
𝑡+1(𝑎 ∣ 𝑠, 𝑣))

𝑎

𝜋
𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣)

𝜋
^

𝛽(𝑎 ∣ 𝑠, 𝑣)

 

If 𝔼𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣) [

𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣)

𝜋
^
𝛽(𝑎∣𝑠.𝑣)

−1] ≥ ∑ [
𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣)

𝜋
^
𝛽(𝑎∣𝑠.𝑣)

]

𝑎

⋅ 𝜖, as for any a 

𝐷(𝜋
^ 𝑡+1 ,𝜋

𝑄
^𝑡
) = max

𝑎
[𝜋

𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣) − 𝜋

^ 𝑡+1(𝑎 ∣ 𝑠, 𝑣)] ≤ 𝜖, 

We have 𝔼𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣) [

𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣)

𝜋𝛽(𝑎∣𝑠,𝑣)
−1] ≥∑ (𝜋

𝑄
^𝑡
(𝑎 ∣ 𝑠, 𝑣) − 𝜋

^
𝑡+1(𝑎 ∣ 𝑠, 𝑣))

𝑎

𝜋
𝑄
^
𝑡
(𝑎∣𝑠,𝑣)

𝜋
^
𝛽(𝑎∣𝑠,𝑣)

.  Therefore, 

𝔼
𝜋
^𝑡+1(𝑎∣𝑠,𝑣)

[𝑄
^
𝑡+1(𝑠,𝑣, 𝑎)] ≤ 𝔼

𝜋
^𝑡+1(𝑎∣𝑠,𝑣)

[𝔹𝜋𝑄
^
𝑡(𝑠, 𝑣, 𝑎)] , and through recursive reasoning, we can 

conclude that the calculated Q-value underestimates the optimal Q-value. 

6. Simulation 

In this section, we conducted two case studies in the traffic world and office world environment, 

respectively, to evaluate the effectiveness of the proposed C-QRM algorithm. In both cases, we 

compare C-QRM and QRM with unbiased and biased data accordingly. 

⚫ C-QRM: Our proposed algorithm in Section 5. It integrates the CQL algorithm with QRM to 

estimate the expected value of a policy under the learned Q-function to lower bound the true Q-

value in a complex world where the high-level task is specified in reward machines. 

⚫ QRM (Q-learning for Reward Machines): We use the QRM algorithm, i.e., Algorithm 1 from [4]. 

6.1. Data Collection 

Biased offline data collection: Using the QRM as the baseline method in both the traffic world 

and office world environments, we first collect the results of using QRM to learn an optimal policy 

which includes the trajectories of the composition of the state, next state, action, and reward for each 

episode. For the dataset preparation, each state and the corresponding actions are collected. By 

generating the action distribution according to different states, we determine the best action at a 

particular state with the highest probability. Since the result contains the entire training process, the 

data is biased since it involves the data produced by the suboptimal policy and causes noise in the 

whole dataset. We then train the C-QRM algorithm to learn an optimal policy from this biased offline 

dataset. 

Unbiased offline data collection: We generate a separate dataset following an optimal policy. 

In other words, this dataset contains the trajectories after the algorithm converges to an optimal policy. 

We collect the data after different episodes for different case studies until the cumulative reward 

converges under an optimal policy. This dataset is unbiased to select the best actions in certain states. 

This dataset helps the C-QRM algorithm to converge faster to an optimal policy. 

In the following two subsections, we compare the results with unbiased and biased data for the 

traffic world and office world environments, respectively. 

6.2. Traffic World Environment 

We apply C-QRM to an autonomous vehicle scenario as introduced in [25]. We consider an 

autonomous vehicle that needs to drive from position “A” to position “B” on a map (see Figure 1), 
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following traffic rules. To simplify things, we will only focus on the right-of-way rules and how the 

vehicle behaves at intersections concerning the traffic from the intersecting roads. We will also make 

two assumptions: (1) the vehicle correctly senses if it is on a priority road, and (2) the vehicle always 

drives straight forward and stays on the road when not at intersections. 

 

Figure 1. Map of a residential area in the traffic world environment. 

The vehicle complies with the traffic rules if and only if it travels on an ordinary road and stops 

for a one-time unit at the intersections; or it travels on a priority road and does not stop at the 

intersections. We aim to accomplish this task using episodic reinforcement learning with an offline 

dataset. Specifically, after each episode of 100 time units, the vehicle will receive a reward of 1 if it 

reaches position B while obeying the traffic rules. Otherwise, it will receive a reward of 0. It is 

important to note that the reward function is non-Markovian because the reward depends on the 

current state and past states, which determines whether the traffic rules were followed. 

The reward machine specifying the high-level task in the traffic world is shown in Figure 2. The 

set of actions is A = {straight, left, right, stay}, corresponding to going straight, turning left, turning 

right, and staying in place. For simplicity, we assume that the labeled MDP is deterministic (i.e., the 

slip rate is zero for each action). We set eplength = 2000, N = 100. Figure 3 shows the rewards attained 

with the C-QRM and QRM methods in the autonomous vehicle scenario trained with the unbiased 

dataset. C-QRM converges to an optimal policy within 15,000 training steps, while QRM converges 

to optimal policies within 27,000 training steps. 

 

Figure 2. Reward machine for the traffic world environment. sp: stop at an inter-section; ¬sp: not stop 

at an intersection; pr: end in a priority road; ¬pr: end in an ordinary road. An edge (sp, 0) between v0 

and v3 means that the reward machine will transition from v0 to v3 if the proposition (label) sp becomes 

true and output a reward equal to zero. 

We also show the performance results of comparing C-QRM and QRM with biased data in 

Figure 4. As it shows, even with the biased dataset that contains suboptimal policy data, the C-QRM 

can still converge to optimal policy faster than the original QRM method. Specifically, with the biased 

data, the C-QRM method converges to the optimal policy after 20,000 training steps. 
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Figure 3. Performance of C-QRM in the traffic world environment with unbiased offline data. 

 

Figure 4. Performance of C-QRM in the traffic world environment with biased offline data. 

6.3. Office World Environment 

For this case study, we apply the C-QRM algorithm to the office world scenario in the 9 × 12 grid 

world introduced in [4]. The reward machine specifying the high-level task in the office world is 

shown in Figure 5. The agent has four possible actions at each time step: move north, move south, 

move east, and move west. After each action, the robot may slip to each of the two adjacent locations 

with a probability of 0.05. We use three different high-level subtasks: getting coffee, getting mail, and 

going to the office. The same hyperparameters are applied in the office environment as the traffic 

scenario. Figure 6 shows the cumulative rewards with two different methods and compares the 

performance in the office world environment using an unbiased dataset. C-QRM converges to the 

optimal policy at about 100,000 training steps, while QRM converges to the optimal policy after 

250,000 training steps. With the biased data, the proposed C-QRM algorithm converges to the optimal 

policy at about 200,000 training steps, as shown in Figure 7. 

 

Figure 5. Reward machine for the office world environment. The task consists in visiting locations on 

the map in order, here b, then d, then b again, and finally.  
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Figure 6. Performance of C-QRM in office world with unbiased offline data. 

 

Figure 7. Performance of C-QRM in office world with biased offline data. 

7. Conclusion 

In this paper, we have addressed the problem of offline reinforcement learning with non-

Markovian reward functions. We propose using reward machines to encode these functions and 

specify high-level tasks for the learning agent in the low-level MDP. Conservative Q-learning is 

integrated with reward machines to address real-world situations where learning while interacting 

with the environment is expensive and dangerous. Conservative Q-learning lower bounds the true 

value of the learned policy to avoid the distributional shift issue with static datasets. We have 

conducted experiments to demonstrate that our pro-posed method, C-QRM, outperforms QRM in 

terms of a faster convergence of rewards. Two case studies were conducted to evaluate the results. 

We hypothesized that integrating reward machines with conservative Q-learning (C-QRM) would 

improve sample efficiency and convergence speed compared to QRM in offline RL with non-

Markovian rewards. Experimental results in Section 6 validate this hypothesis: C-QRM achieved 44% 

faster convergence in the traffic world (15k vs. 27k steps) and 60% faster in the office world (100k vs. 

250k steps) with unbiased data. Even with biased data, C-QRM maintained superior performance, 

confirming its robustness to suboptimal datasets. Our work opens new research directions for formal 

methods with offline reinforcement learning algorithms. Future work could explore how reward 

machines can be integrated with other offline RL algorithms, such as Batch Constrained Q-learning 

[17] or the D4RL dataset. Furthermore, future work could focus on scaling to more complex tasks and 

environments, such as multi-agent scenarios or real-world robotics applications. We will also 

implement the proposed method on physical robots to complete complex tasks and learn the optimal 

policy using pre-collected offline datasets. 
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