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Abstract: This research addresses the challenge of designing control systems to stabilize the 

nonlinear dynamics of underwater vehicles. Model Predictive Control (MPC) is a widely recognized 

technique that determines the current control input by solving an optimal control problem. 

However, MPC cannot be directly applied to systems where all state variables are not precisely 

known. Typically, state variables are inferred from sensor measurements, meaning that only a  

subset of them is available for control input design. This study aims to develop a control approach 

that stabilizes underwater vehicle dynamics by integrating a state estimation method into the MPC 

method. The novelty of this study is to develop a control framework that integrates MPC method 

with the state estimation method based on Unscented Kalman Filter (UKF) for stabilization of 

underwater vehicle dynamics. 

Keywords: autonomous vehicle; underwater vehicle; nonlinear dynamics; optimal control; state 

estimation 

 

1. Introduction 

Autonomous underwater vehicles (AUVs) are anticipated to play a crucial role in a wide range 

of applications. The diverse utilization of these vehicles has driven researchers to advance control 

systems and technologies tailored for underwater operations [1–3]. Optimal control methods [4,5] 

have been proposed to reduce the control energy of AUVs. Multi-target tracking and sensing 

framework for AUVs have been investigated in research papers [6–8]. However, the nonlinearity and 

complexity of AUV’s dynamics caused by fluid flow has not considered in [1–8]. This research 

addresses the challenge of designing control systems for stabilizing the nonlinear complex dynamics 

[9] of underwater vehicles.  

Model Predictive Control (MPC), also referred to as receding horizon control [10–15], is a well-

established approach in which control inputs are computed by solving an open-loop optimal control 

problem over a finite time horizon. This optimization is performed iteratively at each sampling 

instance. Therefore, MPC belongs to the class of optimal feedback control strategies that optimize 

control performance within a finite prediction window, where the initial and terminal times shift 

dynamically. MPC is widely regarded as one of the most effective control methodologies, as it 

facilitates optimal performance while incorporating constraints on state and control variables [16–19]. 

A method based on MPC has been proposed for stabilizing the nonlinear rotational dynamics of 

underwater vehicles [20]. However, the aforementioned control strategies cannot be directly applied 

to systems where all state variables are not fully observable. In practical scenarios, state variables are 

typically inferred from sensor outputs, meaning that only a subset of them is accessible for control 

input design. In other words, complete state information is often unavailable since measurements are 
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limited by the capabilities of onboard sensors, restricting the number of directly observable variables. 

As a result, effective automatic control systems must integrate state estimation techniques. To address 

this issue, a state estimation framework for underwater vehicle dynamics with partially measurable 

state variables has been developed in [21] using the Unscented Kalman Filter (UKF). UKF is a well-

recognized estimation algorithm that minimizes estimation errors while accounting for both process 

noise and sensor noise [22]. 

The primary objective of this study is to develop a control framework that integrates Model 

Predictive Control [20] with state estimation techniques [21] to enhance the stabilization of 

underwater vehicle dynamics. To achieve this, an observer system is introduced to estimate the state 

variables of underwater vehicle dynamics. Subsequently, the UKF-based state estimation technique 

is incorporated into the MPC framework. As a result, this study establishes a control methodology 

capable of handling underwater vehicle systems with limited state observability. To the best of our 

knowledge, no prior studies have proposed a model predictive control scheme that explicitly 

integrates state estimation in this manner. The efficacy of the proposed approach is validated through 

numerical simulations. 

2. Notation and System Model 

In this section, we introduce a system model of underwater vehicle dynamics. Figure 1 shows a 

schematic view of the system model of underwater vehicle. The notation utilized in the system 

formulation is summarized in Table 1.  

 

Figure 1. System model of underwater vehicle. 

Table 1. Notations of System Parameters. 

Notations System Parameters 

𝑣𝑋 , 𝑣𝑌 , 𝑣𝑍  Translational Velocities 

𝜔𝑋, 𝜔𝑌, 𝜔𝑍 angular velocities 

𝑚 vehicle mass 

𝑚𝑋, 𝑚𝑌, 𝑚𝑍 added mass 

𝐼𝑋, 𝐼𝑌, 𝐼𝑋 principal moments of inertia 

𝐽𝑋, 𝐽𝑌, 𝐽𝑋 added moments of inertia 

𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6 control inputs 

Let the state vector 𝑥(𝑡) be defined as 

𝑥(𝑡) ∶= [𝑣𝑋(𝑡), 𝑣𝑌(𝑡), 𝑣𝑍 (𝑡),𝜔𝑋(𝑡),𝜔𝑌(𝑡),𝜔𝑍(𝑡)] (1) 

For the sake of simplicity in notation, the following parameters are introduced: 

𝑎1 ∶= 𝑚 + 𝑚𝑋, (2a) 
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𝑎2 ∶= 𝑚 + 𝑚𝑌, (2b) 

𝑎3 ∶= 𝑚 + 𝑚𝑍, (2c) 

𝑏1 ∶= 𝐼𝑋 + 𝐽𝑋, (2d) 

𝑏2 ∶= 𝐼𝑌 + 𝐽𝑌, (2e) 

𝑏3 ∶= 𝐼𝑍 + 𝐽𝑍. (2f) 

Using these notations, the system model shown in [20] can be described by the following state 

equation:   

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)), (3) 

𝑓(𝑥(𝑡), 𝑢(𝑡)) ∶=

[
 
 
 
 
 
 
 
 
 
 
 
 
𝑎2
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𝑏1 − 𝑏2
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𝑢6

𝑏3 ]
 
 
 
 
 
 
 
 
 
 
 
 

. 

 The output function 𝑦(𝑡) is introduced as: 

𝑦(𝑡) = 𝐶𝑥(𝑡). (4) 

where 𝐶 is a coefficient to account for restrictions on sensor allocation. 

3. Model Predictive Control 

In this study, the Model Predictive Control (MPC) approach is employed for the design of a 

control system for an underwater vehicle, considering the nonlinear characteristics of its rotational 

dynamics. Here, we formulate the optimal control problem associated with system (3). 

The control input 𝑢(𝑡) is determined at each sampling instant by minimizing the following 

performance index: 

𝐽 = 𝜙(𝑥(𝑡 + 𝑇)) + ∫ 𝐿(𝑥(𝜏), 𝑢(𝜏))𝑑𝜏
𝑡+𝑇

𝑡

 (5) 

Here, 𝑃 , 𝑄 , and 𝑅 represent weighting matrices, while 𝑇 denotes the evaluation interval, 

commonly referred to as the prediction horizon. The functions 𝜙 and 𝐿 correspond to the terminal 

cost and stage cost functions, respectively, and are defined as follows: 

𝜙 = (𝑥(𝑡 + 𝑇) − 𝑥𝑓)
T
𝑃(𝑥(𝑡 + 𝑇) − 𝑥𝑓) 

𝐿 = (𝑥(𝜏)− 𝑥𝑓)
T
𝑄(𝑥(𝜏)− 𝑥𝑓) + 𝑢T(𝜏)𝑅𝑢(𝜏) 

The minimization of (5) under the constraint imposed by the system equation (3) can be 

reformulated into an equivalent optimization problem by introducing a Lagrange multiplier 𝜆 , 
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which accounts for the constraint associated with the system dynamics. Consequently, the following 

augmented performance index 𝐽̅ is obtained: 

𝐽̅ = 𝜙(𝑥(𝑡 + 𝑇)) + ∫ (𝐿(𝑥, 𝑢)+ 𝜆T(𝑓 − �̇�))𝑑𝜏
𝑡+𝑇

𝑡

 (6) 

By applying the variational principle, the necessary conditions for minimizing 𝐽̅ are derived as 

follows: 

�̇� = 𝑓(𝑥, 𝑢) (7a) 

𝜆(𝑡 + 𝑇) = (
𝜕𝜙

𝜕𝑥
)
T

 
(7b) 

�̇� = −(
𝜕𝐻

𝜕𝑥
)
T

 
(7c) 

𝜕𝐻

𝜕𝑢
= 0 

(7d) 

These conditions, collectively referred to as the stationary conditions, are also known as the 

Karush-Kuhn-Tucker conditions or Euler-Lagrange equations. It is well established that these 

conditions must be satisfied to achieve the minimization of the performance index (6). In general, 

solving these conditions analytically is not feasible. Recently, various numerical techniques have been 

introduced to address this problem. The Continuation/Generalized Minimum Residual (C/GMRES) 

method, proposed in [23], is one such efficient numerical algorithm. In this study, we utilize the 

C/GMRES method to solve the stationary conditions in (7). A comprehensive explanation of the 

C/GMRES method can be found in [23]. 

4. State Estimation based on Unscented Kalman Filter 

Let 𝜏  represent the discrete-time index corresponding to the sampling interval Δ𝑡 . The 

continuous-time system model given in (3) can be transformed into the following discrete-time 

representation: 

𝑥(𝜏 + 1) = 𝑓(𝑥(𝜏), 𝑢(𝜏)) (8a) 

𝑦(𝜏) = 𝐶(𝑥(𝜏)). (8b) 

In this section, we introduce a state estimation approach utilizing the UKF for the discrete-time 

system model (8). To begin, we define the observer system as follows: 

𝑥(𝜏 + 1) = 𝑓(𝑥(𝜏),𝑢(𝜏)) + 𝑧(𝜏), (9a) 

𝑦(𝜏) = 𝐶𝑥(𝜏) + 𝑤(𝜏)#(9b) (9b) 

Here, 𝑥 and 𝑦 denote the estimated state and output, respectively, corresponding to 𝑥 and 𝑦. 

The terms 𝑧 and 𝑤 represent the process noise and observation noise, which originate from external 

disturbances. In the framework of minimum mean-squared error estimation, the optimal state 

estimate is given by the conditional mean. It is assumed that both  𝑧(𝜏) and 𝑤(𝜏) have zero mean 

for all time steps 𝜏.  

It has been established that the state estimate at time 𝜏 + 1 is obtained by refining the prediction 

through a linear update rule: 

𝐊(𝜏 +  1) =  𝐏(𝜏 +  1|𝜏)𝐑−1(𝜏 +  1|𝜏), (10a) 
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𝑥(𝜏 +  1|𝜏 +  1) = 𝑥(𝜏 +  1|𝜏) + 𝐊(𝜏 +  1)(�̅�(𝜏 +  1) − 𝑦(𝜏 +  1|𝜏)), (10b) 

𝐐𝑥(𝜏 +  1|𝜏 +  1) =  𝐐𝑥(𝜏 +  1|𝜏)− 𝐊(𝜏 +  1)𝐑(𝜏 +  1|𝜏)𝐊T(𝜏 +  1). (10c) 

The state estimation framework presented in this section is integrated into the Model Predictive 

Control method described previously. A brief overview of the numerical solution method, which 

combines the C/GMRES approach with the state estimator based on UKF is illustrated in Figure 2.  

 

Figure 2. Overview of the proposed method． 

5. Numerical Simulations 

This section presents the results of numerical simulations aimed at validating the effectiveness 

of the proposed method. The parameters used in the simulations are listed in Table 2. Notably, in 

these simulations, 𝑥1 is not measured through the output sensors. 

Two numerical simulations are performed with different initial state estimates to evaluate the 

method's performance under varying conditions. The error 𝑒𝑖 is defined as 𝑒𝑖 = 𝑥𝑓 − 𝑥𝑖. The first 

simulation uses the following initial estimate: 

𝑥(0) = [2, 1, 1,
𝜋

36
,
𝜋

36
,
𝜋

36
]
T

 

In the second simulation, a different initial estimate is used: 

𝑥(0) = [3,−2, 3,
𝜋

12
,
𝜋

12
,−

𝜋

36
]
T

 

Figures 3 and 6 show the time responses of 𝑥(𝑡) and 𝑥(𝑡). It can be seen from these figures that 

the estimated state converges to the real state, and the real state converges to the target state. Figures 

4 and 7 show the time responses of the errors between the target states and the actual states. 

Additionally, Figures 5 and 8 show the time responses of the control inputs. Consequently, the 

effectiveness of the proposed method was verified by numerical simulations.  

Simulation is performed on a laptop computer (CPU: Intel(R) Core(TM) i5-1135G7 2.4 [GHz], 

Memory: 16.0 [GB], OS: Windows 11 Pro, Software: Matlab). The average computational time 

including both MPC and UKF computations per update (one control cycle) is 1.4  [ms]. The increase 

in computational load due to the number of steps in the evaluation interval or the number of the state 

variables is not exponential but less linear growth.  

 Table 2. Parameters used in numerical simulation. 

Parameters Parameters 

(0) = [1, 1, 1,
𝜋

36
,
𝜋

36
,
𝜋

36
]
T

 𝐐𝑧 = diag [0, 0, 0, 0, 0, 0] 

𝑥𝑓 = [0, 0, 0, 0, 0, 0]T 𝐐𝑤 = diag [0.1, 0.1, 0.1, 0.1, 0.1, 0.1] 
𝐼𝑋 = 0.438 𝑚𝑋 = 𝐽𝑋 = 34.9 
𝐼𝑌 = 0.833 𝑚𝑌 = 𝐼𝑌 = 101 
𝐼𝑍 = 0.758 𝑚𝑍 = 𝐽𝑍 = 82.5 
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Figure 3. Time responses of 𝑥(𝑡) and 𝑥(𝑡). 

 

Figure 4. Time responses of 𝑒(𝑡). 

  

Figure 5. Time responses of 𝑢(𝑡). 



Sci. Insights 2025, 1, 4  7 of 9 

 

 

Figure 6. Time responses of 𝑥(𝑡) and 𝑥(𝑡). 

 

Figure 7. Time responses of 𝑒(𝑡). 

 

Figure 8. Time responses of 𝑢(𝑡). 
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6. Conclusion 

In this study, we propose a control method for stabilizing underwater vehicle dynamics, 

considering the scenario where some state variables of the system are unobservable, and the sensor 

output is contaminated with observation noise. The approach applies MPC with a fast numerical 

algorithm, C/GMRES, and a state estimation method based on the UKF to design the control system. 

The MPC method previously proposed for controlling underwater vehicles cannot be applied when 

not all state variables of the system are exactly known. In practice, state variables are typically 

measured through output sensors, meaning that only a limited subset of them can be used to design 

the control inputs. To address this, we propose a control method that combines MPC with a state 

estimation technique for stabilizing underwater vehicle dynamics. Finally, we present the results of 

numerical simulations that validate the effectiveness of the proposed method. 

In this study, it is assumed that the process noise and observation noise are zero-mean and 

Gaussian. In real-world scenarios, noise does not always follow these assumptions. In the case of non-

Gaussian or correlated noise conditions, the estimation method modified using particle filter might 

be more effective. This investigation is considered to be a possible future work. 
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