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Abstract: The bilateral quadratic ;H; -series is examined and evaluated by making use of the
Cauchy residue method. The main theorem presents an analytic formula for this series, which
contains five closed summation formulae as consequences. Just like the classical hypergeometric
series, these remarkable formulae should find potential applications in pure mathematics and
theoretical physics.
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1. Introduction and Motivation

Let and  be the sets of integers and natural numbers with o= {0}. Then for an
indeterminate  and , the shifted factorial can be expressed as the quotient

() =rC + )/T().
Here the I'-function is defined by Euler integral:

r()= T -i- g with ()>0,
0

which satisfies Euler's reflection formula (cf. Rainville [1, §17])

roOra- )= M
and Legendre's duplication formula (cf. Rainville [1, §19])
re)= 2 reor +1 2
( )—F ere +2). 2)

Throughout the paper, we shall adopt the following notation of Bailey [2] and Slater [3] for the
generalized hypergeometric series

[0.1,. 1o W) )
o v Iy ()
=0
[llr — (l) ()

1 ’ (l) ()

=—o00

There exist numerous hypergeometric series identities in the literature (see Bailey [2], Slater [3],
Brychkov [4, Chapter 8] and [5-11], just for example). However, for bilateral hypergeometric series
(cf. Slater [3, Chapter 6]), there are relatively few closed formulae:

e Dougall[12,1907]: ( + — — )>1
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) 1_ Yl_ ) ) il + - - _1
e M. Jackson [13, Equation2.3]: 2+ + — — )>0
1+ + - -
no 2 ol -5+ - — -1 2 2
? 7 1+ 1+ 1Ff_* =2 ¥ +
1 1 2 2 —2

1—&1—Q1+h1+¢2_a_;+b+d

x1—a—cl+b+d2—a+b2—a+d2—c+b2—c+d'

2 2 ’ 2 : 2 22
e Dougall[12,1907]: (1+2 - - — —)=>0
1+_| 1 il 1
55 1
1+ — 1+ — 1+ — 1+ -
_ 1+ — 1+ — 1+ — 1+ — 1—- 1— 1- 1- 142 — — — -
Coli+ 1- 1+ - - 1+ - - 1+ - - 1+ - — 14+ — — 14+ — —

e M. Jackson [14, Equation 1.2]: (2 — )>0

1+, . 1+2 — -2 ,1+2 -2 —
z -1
6 6 ,
> 1+ — 1+ — 1+ — - +2, - +2
—F[1+ -1+ - 1- 1-, - +2, - +2, -2 +2, -2 +2]
- 1+ 11_ LI | - |2 - |1+ - - 1 + _3 +4
1+ ; — ’1—324' + +2 . .
o I U i |
2 ’ 2

These formulae can be proved by the modified Abel lemma on summation by parts [15] and
the Cauchy residue method [16].
In this paper, we aim at evaluating the following bilateral quadratic ;H7-series

1

2 +3 1., _ _

(..., )= : [ : : 7 *? l
1+2 -2, 1+2 =2, 2 +2 =2
2, 2, 1+2 —2 —2] ®)
1
+ - + - 4+ 4+

1 1 , >

This will add a significantly new series with its analytic expression to the existing few bilateral
summation formulae just displayed.

The -series is convergent because the sum of its denominator parameters exceeds by 2 that of
its numerator ones. In order to examine the above -series, we shall introduce, in the next section,
the meromorphic Q-function and express residue sums over seven classes of its poles in terms of
three symmetric functions with respect to {b, d} and to {c, e}. Then in the third section, we shall
establish the general summation theorem and derive consequently five closed formulae with three
for bilateral series and two for unilateral ones.

For the sake of brevity, the multi-parameter forms of the I-function and the trigonometric sine
function will be abbreviated respectively to

o[ ]= O O

Do reore) re)’

o [ ]S nC) )
b sin( )sin( ) sin( )
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Throughout the paper, several cumbersome expressions are simplified by appropriately
devised “Mathematica” (Wolfram, Version 11) commands, without reproducing their tedious
details. Furthermore, most displayed equations are experimentally checked in order to assure the
accuracy.

2. The Cauchy Residue Method
Define the meromorphic function by
Q()=

_ 1
tan () 1+—+,1+—+,§+++

1
xr[ +,+,§+2——+ l
1+2 -2 + 1+2 -2 + 2 +2 —2 +
where for the I -function quotient, the sum of its denominator parameters exceeds that of its
numerator parameters by 3.

It is not hard to check that all of the singular points of Q( ) are simple poles, which can be
divided into seven classes:

AA={ = | },

BB={ =— — | oh
DD={ =— — | oh
o=( = + 23| )
cC={ =—2 — | oh
EE={ =—2 - oh
CE={ =2 +2 -2 —1— o}

Let () be the circle of radius + centered at the origin with the > 0 being chosen such
that () does not pass any poles of Q( ). In view of the Stirling formula (cf. Rainville [1, §22]),
there holds, for = + () with =0 (i.e, lies on the right half circle), the following
asymptotic relation:

1
1QC)tan ()| = (W) as| | - oo @)
This relation is also valid when = + lies on the left half of the circle () with <0.In
fact, by making use of the reflection formula (1), we can express
Q)= ()x ()
where
1
2 +3) - - - Z- - -
()= r ’ '2
tan( ) [1-2 - 1-2 - 2 +2 -2 -
2 -2 - .2 -2 — |1+2 -2 -2 —
xr[ 1 1 Lo w ]
1 |2
and
2 -2+ ,2 -2 + ,2 +2 -2 +
():S'n[ +,+,2———%+ l

1
Xsin[_+’_+’§+++].
2 + 2 + 2 —2 —2 +

Now for = + ( ) with x <0, we have the asymptotic relation
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1
| (Dtan ()| = W)as“qoo ®)

thanks again to the Stirling formula.

For the trigonometric fraction 9( ), its factors in the numerator can be paired off with those in
sintt( + )
sinm( + )

the denominator so that 9( ) is written as a product of six fractions of the following form

with and being fixed complex numbers subject to  +
Writing further = + , = + and = + ( ), we can check without difficulty
thatas - oo

|sinm( + )|2_sinn( + )sinn( +7)

lsint( + )| sinm( + )sinn(C+")
_cos2m( + ) —cos2m( + )

= = @
cos2n( + ) —cos2m( + )
which implies that [3( )] = (1). Hence, the asymptotic relation (4) is validated also for = +
() withx<0.
When - oo, there holds analogously forany = + ()

COS21m + cos 21
tan (t )72 = |cot (1t )|2 =cot cotm = = (D).
[tan (10 )] [cot ()| 052 —cosom @

Therefore for sufficient large #, the following inequality holds

1 1
_ < < [
w80 |_ [ +Hymax a0t} =
Consequently, we have the limiting relation:
1
ﬁ ()Q()d -~0as - oo, (6)

According to the Cauchy residue theorem (cf. Titchmarsh [17, §3.11]), the sum of the residues
of Q( ) at its singular points inside () is equal to zero. Denote by (S) the residue sum of Q( )
at its poles in S. Then we have the equality

(AA)=— (BB)— (DD)— (BD)— (CC)— (EE)— (CE). @)

First of all, it is quite routine to write down that

oo

(AA) = Res- {Q()}=2 (.,.,.,.,)
1_
L =+2 — — 2,2,1+2 =2 =2
x [ 2
1
1+2 -2 ,1+2 -2 ,2 +2 -2 ,1+ — |1+ -— ,§+ +

In order to find a closed formula for the -series, we have to evaluate the residue sums for the
remaining classes of poles. Fortunately, these six residue sums can be expressed, in synchronization,
as the following three symmetric functions in {b, d} and in {c, e}:

( 1 1 il 1 )
1+2 1+ L +
_ "2 '2 1 (8)
- 3 2 3 3 1] [l
-+ =2 —,§+ - =2
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( ’ll)
1 1 1 1
=[_1+2————,§+——,§+——,§++——,—++——,(9)
1+ — — 1+ — — 1+ — — 1+ — -
1+2————1+——1—+—
— 2 2
(yyyv)_r 3+ 2 3+ 2 (10)
2 ‘2
2.1. Residue Sums over BB and DD.
For the unilateral quadratic series, there exists the following transformation.
Lemma 1 (Rahman [18, Equation 6.4]).
1+2 2 ,2,1-2 1+2
?1 ) ) ) ) IE 1
7612 1 '
357 A+ — 0 1+2 -2 ,1+2 -2 ,2 +2 =2
1 1
1+2 -2 ,1+2 -2 =+ + 1+ — -+ — + — 1+ — — -
=T 2 2
- 1 1
1+2 1+2 -2 =2 ’§+ - + ’§+ + - 1+ - - 1+ - -
1 1
1+2 -2 ,1+42 =2 .2 +2 =2 1+ — 5+ + 5+ — + -—
+I
3 3
1+2,, ,5+2 =2 - 5+2 — =2
1+ 1+2 1+ +
xr[1+ - - - 2 2 1
2,1-2 32 3 3 a
=+2 -2 - s+2 - -2
Evaluating the residue sum over BB
© sin 2 - —-2)
(BB)= Res—__ {Q()}=
- tan
=0
1
-, z+t2 -2 -2 -2 - 142 - =2 -2
x [ 2
1
2 -3.1+ - - 1+ - - o5— + +
3 - 1
3 -2 .1+ , —2 +2 ,1+2 - -2, + — , + — =+ — -—
« 3 2 1
7 6 3 =2 1 ’
T’1+ - ,5—2 +2 + 1+ -2 .1+ -2, =2 +2 +2

and then reformulating the above ; g-series by Lemma 1, we get, after reordering the terms, the
following explicit formula
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1 1
(BB)_sin @ - -2), 372 *2 + 52 -2 -
h tan 1 1
—— + - + —= + + -
2 2
— 1+ — 2 - 1+ —-2.2 — 1+ =2
xr[z 3.1-2 +3 =+ 1++l
i) 12 12
1 1
XF[ 1+2 - - - ,§+ - T 5T + - l
1+ — — 1+ — — 1+ — — 1+ — -
1 1
sinm(2 — —2)r 1+2 = = = =3+ = = 3= + =
tan b §+ _o §+ _ 5
2 2
><I'[ A1+ - 1+ -2, =2 +2 +2 ,14+2 — -2 =2
2 -3,1-2 +3, + — 1+ — —  + — 1+ — —
1 1
2 — 1+ —2.,2 — Z+2 -2 — Z-2 +2 +
T 2 2
2 +2 1+2 2 1 L.
i) 12 12
1+2 1+ ! +
9 2 2 "
3 2 3+ ) 3+ ) ) .
2 2

In terms of the three symmetric functions defined by (8), (9) and (10), we can write shortly the
residue sum as

(BB): ( [ ) l( [ )+ ( [ ) ]_( [ ) ( [ )
where ; and ; are quotients of trigonometric functions
+2 2,2 -3 1+ 1+ 1+ + 1+ +
1Cyy ) =sin 2 2 21 2 |
y - _2 y _2 1_+2 _2 -
2
2 2,2 2,3 -2 1+ 1+
l( [ R ):Sin 1 2 2

, —, —2, —2,2 — =2 _2’§+2 -2 -

Because the function Q( ) is symmetric with respect to b and d, we have directly

(DD): (!!!!)l(!!!l)_'— (vvvv)l(vvvv)(v!vv)'

2.2. Residue Sum over BD

Next, evaluating the residue sum

oo

(BD) = Res _ | L Q)= 1
2 tan (53+2 — — )
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1
2 + =2 ——=, +2 =2 -7, +2 + -2 ——-, + +2 -2 ——=, =2 + -2 +—
x [ 2
1— + + — 3 +3 —4 —3 1— + - + 1— + + - + + + =2
2 1 1 2!2 12 1
3+4 3 —3 3+4 1+ 1 N
x 2 2 3 ‘2 ‘2
e 1+4 3+2 9 3+2 2
2 3 ‘2 ‘2
1+ + 1+ + 1+2
2 ‘2 ’ 1
3+2 - -2 - 3+2 - = =2 L +2 - +2 |
2 2 2

and then transforming this ; ¢-series by Lemma 1, we derive, after simplifying the resulting
expression, the following explicit formula

(BD): (IIII)2(I!!I)+ (1111)2(1111)(1111)
where , and ; are quotients of trigonometric functions
1+4 -3 -3 1+ - + - 1+ - - +
. 2 2 2
2(| IR )_SIn 1 1
_+ — — — J— p— — J— —_—
> 2 ,2+2 2 ,2+2 2
1
2 - - = =, + =2 ,§+ -
o 1+2 2 1+2 2 |
2 2
2 - - = -, + =2 ,§+4 -3 -3
2(| [ )zSin 1 1
—+ - - — - = - — .
5 2 =+ 2 2 ,2+2 2
1 1 1
. E+ - =+ —,§+ - + _’E+ - - +
o 1+ 2 + 2 1+2 2 1+2 2
2 2 2

2.3. Residue sums over CC and EE

For the unilateral quadratic series, there is another shorter transformation.
Lemma 2 (Rahman [18, Equation 6.5]).

- 1+2 1+ 2,2 ,1+2 2 2
1 31 12 i) il 1 1
7 6 2 1 H
- 2.,1+2 -2, 1+ — 1+ — -+ +
| 3 2
E 1+ 1+ + + 1+
_ 2! i) 1 112 1
+ + —+ + - - + - —+
-1 72 !2 Yl 1 !2

Writing down the residue sum over CC
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CC) = Res -, - {Q =<
(cC) . 2 - {Q()} w2 )
1
-2, —2,2 —2,1+2 —4 —2,§+2 - =2 -
1
-3,2 +2 -2 —2,5— +

x[

1+2 -2 -2 ,1+2 -2 -2 1+ -2 — ,
2 +2 =2 .,2 +2 =2 ,1+2 =2 +2 =2

1

-2 -+,
1
=2 + +2 +

1
—+
2

1+2 _2 3 -
5 3 )
76 2
2 ——=,1+2 -2 ,4 -2 +2, 1+2 — 1+2 —
and reformulating the above ; g-series by Lemma 2, we have alternatively
2 -2 .1+2 -, —2,1+2 — ,%+2 - -2 - %—2 + +2 +
(C0) = ———T . L
@) | -3143 - 142 =2 —2.142 =2 -2 5+ + - 4+ 4
1
=1+2 -4 -2 .2 =2
x [ 2
1
1+ =2 — Z— + 1+ — + — 2 +2 =2 =2
1
+ -, + - ,§+ - + -
X 32 |1].
1+ — =—— +2 +
The last 3 ,-series can further be expressed as
1
+ -+ - =+ - + -
32 1 |1
1+ — =— +2 +
2
1 1
1+ A+2 = — — — =+ — — =+ - -
— 2
1
-—— 4+ + - 1+ - - 1+ - -5t -2 -
1+2 - - — 1+ -
= (xT P
11 1
2 + — —= =+ — — -+ — -
<[ 2'2 2
', + 3. 2 ri o
2 ‘2 ‘2
thanks to the nonterminating Saalschiitzian summation formula
o A+ - 1+ — 1+ —
R
_r 11+ 11+ - 11+ o _1 1+ - rl+ - rl+ . (11)
1 1 |1+ - 11_ ] 3 2[ 1+ - ’2_ '
where 1+ + + = + | This is implied in [19, II-24: g4 — 1] and in one of Thomae’s 120
transformations (cf. [2, §3.7: Equation 5]).
Consequently, we derive, by substitution, the expression
(CC): (1111)3(1111)+ (1111)3(1771)(1111)1
where 3 and 3 are quotients of trigonometric functions
1 1 1 1 1
-3 ,=+2, + — — =4+ — — -+ — — —+ — + — —+ - - +
(. .. )=2sin 2 2 2, 2 ,
-2, -2, —2.+2 - -2 —
2
1
1 3 -2 -2-2,2-2-2,2+2 -2 -2 ,5+2
= i 2
3( ,)—Zsm 1
- .2, -2, —25+ -2 - §+2— -2 -
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Recalling that the function Q( ) is also symmetric with respect to and , we have

(EE): (1111)3(rrll)+ (1111)3(1111)(1111)'

2.4. Residue Sum over CE

For the residue sum over CE, we have

<)

(CE)= Res— 41— {Q()}=
=0

-2
tan (1+2 -2 —-2)

1
+2 +2 -2 —-12 + +2 -2 —-12 +2 - — ——-4 +2 -2 —-12 +4 -2 -1
x [ 2 3
242 -2.,2+2 -2.2 42 +2 +2 —4 -1, +2 - 2+ — 343 -2 —3
3 4
42 -3 =3 .2+——-2 -2 ,1+ — -2 ,1+ -2 —
x 762 3

4
1+?—2 -2 ,2+2 —4 -2 ,2+2 -2 —4
1+2 -2 -2 ,1-2 +2 -2 ,2+4 -2 —2 —2 =2

3 1
242 - -2 -2,242 -2 - -2+ -2+ -2

which can be restated, in view of Lemma 2, as

-2
(CE) =
tan (1+2 -2 —-2)
1
5 +2 +2 -2 —-12+2 - -2 -2.,2 + +2 -2 —-12+2 -2 - =2
x [ 2
35
3 +3 -2 —5,5+2 -3 -3,1+ - - 1+ - — 2 +2 -2 ,2 +2 =2
13
2 42 - - -+ -2+ —-2.2+4 -2 —-14 +2 -2 -1
< 2'2
3
+2 - 2 + —,2+2+2+2—4—1,§+2— - - -
1+2————1+——1—+—
« ‘2 ‘2 1
t 3+ 2 3+ 2 a
2 ‘2

We get therefore a relatively shorter expression

(CE): (1111)4(1111)(1111)1

where 4 is the quotient of trigonometric functions

2 -2 -2,2 -2 -2,4 -2 -2 -2 -2

«CovnD=gsIn | o2 - —2—22 -2 - -2
1+2 2 =2 1+2 3 -3
% sin 2 2
+ 2 + 2 1+ - =2 1+ -2 -
2 2 2

3. Main Theorem and Formulae

According to the linear equality (7), we obtain, by putting the six residue sums together, the
following expression

1
any |12 —21+2 2.2 42 204 -1 - S s
(1 v s ): 2 x[ 1

’ !§+2 - - ,2,2,1+2 _2 _2




Sci. Insights 2025, 1, x; 10 of 16

1 |1+2 -2 ,1+2 -2 .2 +2 -2 ,1+ — 1+ - ,%+ +
=
,,%+2 - - 2.2,1+2 -2 =2
X{ ( [ ) ( I )+ ( I ) ( [ ) ( [ )}r
where  and  are linear combinations of trigonometric quotients
( [ T ): == 1( vy ) - l( [ I ) - 2( [ R I )
- 3( [ R ) - 3( [ )|
( Yoo ): == l( Yoo ) - 1( [ I R ) - 2( Yoo )
- 3( [ R )_ 3( Yo o )_ 4( [ IR )

We have therefore established the following remarkable evaluation theorem.
Theorem 3. For the bilateral quadratic series  defined by (3), the following summation formula holds:

1
1 142 -2 1+2 -2 ,2 +2 -2 ,1+ — 1+ - Zt
( [ B B ):2_xr 1
, ,§+2 - - ,2,2,1+2 -2 =2
x{ (| 1 ) 1 ) (Y 1 1 1 )+ (| 1 ) 1 ) (Y 1 1 1 ) (Y 1 ) 1 )}'
By making use of Mathematica commands, the two coefficients and are miraculously

simplified into the following elegant expressions:

_cos (= )eos ( — )os (= + — )os ( — — + )
C.o= sin( )sin( )sin( )sin( )
><sin( )sin ( + - ){1_tan ( — Htan ( — )Htan( )}
cos (+ —2) tan( )tan ( — — )cot( )J’
- 2-22-2.2-2 -2} 4
(,.,,,)=—1—sin 2

, ,2,2,2 =2 =2 ,l+2 - -
2

When one of the numerator parameters is a negative integer and one of the denominator
parameters is a positive integer, the bilateral  -series becomes terminating. In this case, several
terminating quadratic ; ¢-series can be evaluated in closed forms by means of Theorem 3. We
shall not reproduce them because they have been worked out by the modified Abel lemma on
summation by parts (cf. [20, Corollaries 12, 13, 15 and 16]) and the inverse series relations (cf. [10,

Equations 1.7 & 1.8] and [21, Equation 4.2b] and [22, Equations 4.1d, 4.2d & 5.1e]).
Instead, we shall derive, by making use of Theorem 3, five summation formulae when the
-series is nonterminating. They will be presented in two subsections, respectively, for bilateral

and unilateral series.

3.1. Summation Formulae for Bilateral Series

Firstly, let 1+ = + in Theorem 3. In this case, the balanced -series reduces to
a  p-series, which can be evaluated by the Gauss summation formula (cf. Bailey [2, §1.3])
1
—_— — , + — —_— _E
( [ rl+ - ): 2 1 1 ;1
-—2 +
2
! 2 +
=T 2
1
1+ — — =— — + +
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Observe that (, , , ,1+ — ) =0 because of the presence of [(0) in the denominator.
We have
3
1+2 -2 ,2 +2 —-2 ,1+ — ,§+ + -
(v [ rl+ - ):r 1
— 4+ —_— —_— p— —
3 2 2,2 2 -1
1 il il ’1+ -
x (’ ) i |1+ - ) ( ) (l 1 1 |1+ - )'

2 (1+2 -2)
By simplifying the product

(|v||1+_)

> ar2 —2y Gt )

1
(- - )r+2 =-2)y2 +2 -2 -2 =1y

we find the following closed formula.
Proposition 4. For the bilateral quadratic series  defined by (3), we have the following closed formula:
1
2 —2.,2 +2 -2, -t -
1
'§+2 - - ,2,2 =2
(- ) —-)@a+2 +2 -2)Y1+2 =-2)
(+ —)a+2 —-2)ya1+2 +2 -2 -2)

(,,, ., 1+ —)=r

1
-+ + - 2 -2, -2 -2 =2
x{1—sin 1
-+2 — - 2.2 =2
l 2 it 1 1
Analogously, let + =2+ + in Theorem 3. In this case, the balanced -series reduces

againtoa , j-series which can be evaluated as follows:
1

(| L] |§_ + + ): 2 1[1_:2 __’2 : __ ’1]
[ 12 -2 - -
Tl - -1+ - - |
Since (, , , ,%— + + ) =0, the corresponding quadratic series is evaluated in the

following proposition.
Proposition 5. For the bilateral quadratic series  defined by (3), we have the following closed formula:

Covgmoro=r T2 T T
===+ + )
(- =)= -~ =)
><{1+sin [2 _2"2’_’42__22_'2__2_ - ]}

Finally, when - -+ and - g+ , the corresponding -series in Theorem 3 can be

evaluated by Dixon’s summation formula (cf. Bailey [2, §3.1]):

13 2 3 3

22%3 7 T2t T2t T 77
(l§+ll§+l):r1+ 14 2+4 ) ) 1+2

3 3 3 ’ 3

By means of the Legendre duplication formula, it can be verified that
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(.z+..3+, )x 1
C3*+ . 3*%) (3750 )=2

Therefore, we have the following expression
1+4 2 1+4 2,2 +2 2 1+ 1+ 1+ +
B B _ A ) ? ) ?I ) 15
( 13 + ] |3 + [l ) - r 1 4
§+ ,§+ ,E'f‘?_ - ,2,2,1+2 -2 =2
( y§ + y l§ + ’ )
x 4 {2 ( |§+ ’ 1§+ ’ )+ ( |§+ ’ 1§+ ’ )}
where is given explicitly by
1+——-2 -2 —+=-— ! +=— ! + ! +
(_+ 4+ ):I' 3 '2 3 '2 3 '2 3 '2 3
E | 1+2 -2 1+2 -2 1+2 - -1 2
3 ' 3 ’ 3 ' 3
By executing Mathematica commands, we find a slightly reduced expression
cos (% - =)
2 (|_+11_+ |)+ (|_+11_+ 1): e(ll)
3 3 3 3 oS (% - -)
where the trigonometric expression ©( , , ) is determined by

oC..) 4
sin(T>cos (5— )cos (5— )

" sin (—+ )sin (§+ )sin(z Ysin(2 )sin 2 —2 —2) (12)
(1+2cos (2?—2))(sin (§+ )sin ( —)—sin® ( - —2))
—2sin (5— )(1+Zcos ( — )cos (§+ ))sin (- —2)

We remark that the above trigonometric expression in the braces ‘{- - - }' is symmetric with

respect to ‘c and €’, even though it does not look like so.
Hence, we have established, after some routine simplifications of the I'-function quotient, the

following evaluation.
Proposition 6. For the bilateral quadratic series  defined by (3), we have the following closed formula

( .§+ ) ,§+
where © is defined by (12) and '( ) by
4 4
——2 =

1+ — 1+ - ,1+?—2,1+

r¢( )=r
1+2 -2 -2 ,2,2,

3.2. Summation Formulae for Unilateral Series
, it is routine to check that

_cos (= )eos ( — ) and ( y=—1

Coo)= sin( )sin( )

When =
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The corresponding formula in Theorem 3 reads as

1+2 -2 .,2 ,1+ — 1+ -— ,1+ +
(vvvv):_r 1 2
1+, 5+ = ,2,2,1+42 =2 =2
x{(!!!!)(vvvv)_ (!!!!)(!!!!)}

which can be simplified into the following formula.
Proposition 7. There holds the evaluation for the unilateral quadratic series:

11+ 1+ 1+ 1+ 1+ 1+ + 1+

, -c , , , 5+ 5+ 5
Y 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+
) ' ) 15 15 15 15

1+ 1+ 1+ 1+ — —

1= (. ,ooyxr2 2
S+ -2 - 2+ - -2
g ,

The last formula is equivalent to the beautiful one displayed in Lemma 2 which can be justified
by reformulating the above expression inside the braces “{- - - }” by

(| [ |)
+ - + - 3+ -2 - 3+ - =2
:r 1 12 12
1+ 1+ 1 + + L + +
1 IE IE
+ + L +
_ ' 2 .1 (13)
32 ;
1- + -—=2 + +2
3 3
+ -, + - -+ -2 - -+ - =2
! 1+2 1 + 1+ L 2 + +2
1 12 12

The reciprocal relation in (13) can be, in turn, derived by applying the two term relation due to
Thomae (1879, cf. Bailey [2, §3.2: Equation 2]) and then the non-terminating Pfaff-Saalchiitzian
summation formula (11).

Alternatively, for = , we have
( )_cos(——)cos(+——)
Y sin(2 )sin( )
cos - + )sin 2 - -2
< {l— ( ) (_ )}’
cos ( — —)sin( )
(v [ ] ):_1
The corresponding formula in Theorem 3 can be restated as
1
1+2 -2 ,1+2 -2 2 +2 -2 ,1+ — -+ +
— 2
(I [ Il )_r 1
y 1§+2 - - |1+2 ,2,1_2
x{(llll)(l!ll)_ (Il!l)(llll)}'

By canceling the common factors, we get an explicit formula.
Proposition 8. There holds the evaluation for the unilateral quadratic series:
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1 1
: yocos (= =)t Tt Tt 7T
[ R | _COS(_+) 1 1
E+ - + =+ + - -
><r[1+ - - - 1+2 -2 ,14+2 —2 ,2 +2 =2
1+2 1+ — — 1+ — — , 1-
><1cos(—+)sin(2——2)sin(2)(,,,,)
cos ( — = )sin( ) cos ( — — )
1- 1+ — — 1+ — —,1— - + +
xT 1 3 ® a
%2 - T 37 T g2

The above formula is equivalent to another formula displayed in Lemma 1, which can be
restated in the following manner:

1 1
sin(2 ) 5Ttz o -
(1 [ ] ): r 1 1
cos (+ - =) |24 - + 24 4+ — -
2 ‘2
><I'[1+ -1+ - - - 1+2 -2 ,1+2 =2 ,2 +2 =2
1+2 1+ - — 1+ — — | 1-—
><{sin 2 +2 =2 )os ( + — )
sin ( )sin (2 ) 1 (14)
1- 1+ — — 1+ — — =+ — +
i 1+ +2 2 3+2 2
’2 il ’2
1+ — — — —+2 — — —+ — + -—
X 32 3 3 1
-+2 -2 — =+2 — -2
2 2
In fact, by applying (11) to the 3 ,-series on the right hand side of (13), we get another
reciprocal relationfor (, , , , ):
(l 1 1 1 )
1+ + 1+ + 3+ 2 3+ 2
=2 2 2 2
1+ — — 1+ — — 1+ — — 1+ — -
1 1
142 — — — — 5+ + — — 5+ + — -—
- 2 2 1 @5
3 2 3 3 ! ( )
5+2 -2 - 5+2 = =2
1 1 3 3
-+ + - - =+ + - - -+ -2 - -4+ - =2
<2 2 2 2
! L 3+2 2 3+2 2
2 '2 ‘2 '2

Then Rahman’s formula (14) follows by rewriting the 3 »-series in Proposition 8 by (15) and
then factorizing the trigonometric expression

1_sin @2 - —2)o0s (- + )_ sin(2 )sin( )
sin( )cos ( — — ) cos (— —)os (+ — —)
_sin 2 +2 —2)os ( — + )cos ( + — )
Bl sin( )cos ( — — )cos ( + — — )

4. Conclusion and Further Comment

By making use of the Cauchy residue method (the contour integration approach), we have
successfully evaluated a difficult bilateral quadratic -series. This will be shown to be a significant
contribution to the theory of hypergeometric series and special functions. There exist terminating



Sci. Insights 2025, 1, x; 15 of 16

cubic and quartic series in the mathematical literature (for example, [10,18,20]), it would be equally
important to establish their bilaterally nonterminating counterparts as we have done for the
quadratic one. The interested reader is enthusiastically encouraged to make further exploration.
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